共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
三角形约束下的词袋模型图像分类方法 总被引:1,自引:0,他引:1
视觉词袋模型广泛地应用于图像分类与图像检索等领域.在传统词袋模型中,视觉单词统计方法忽略了视觉词之间的空间信息以及分类对象形状信息,导致图像特征表示区分能力不足.本文提出了一种改进的视觉词袋方法,结合显著区域提取和视觉单词拓扑结构,不仅能够产生更具代表性的视觉单词,而且能够在一定程度上避免复杂背景信息和位置变化带来的干扰.首先,通过对训练图像进行显著区域提取,在得到的显著区域上构建视觉词袋模型.其次,为了更精确的描述图像的特征,抵抗多变的位置和背景信息的影响,该方法采用视觉单词拓扑结构策略和三角剖分方法,融入全局信息和局部信息.通过仿真实验,并与传统的词袋模型及其他模型进行比较,结果表明本文提出的方法获得了更高的分类准确率. 相似文献
3.
4.
杨赛 《中国图象图形学报》2013,18(11)
针对没有关于参数、编码方法、聚集方法如何影响词袋(Bag-of-Features, BoF)特征压缩算法性能的全面研究报道,并且压缩算法没有考虑编码矢量之间空间关系等问题,本文给出了压缩算法与金字塔模型相配合的图像分类步骤,以公开图像数据集为实验对象,对压缩算法进行比较性研究。实验结果表明,压缩算法对于视觉单词数目以及编码方法具有良好的鲁棒性;其中基于子空间方法的压缩算法在高层图像特征空间中的分类性能最优,在多个图像数据集上的分类性能最优,时间开销最小。 相似文献
5.
针对目前词袋(BoF)特征压缩算法忽略编码矢量之间空间关系的问题,本文给出了压缩算法与金字塔模型相配合的图像分类步骤。同时以多个公开图像数据集为实验对象,对典型词袋特征压缩算法的性能进行比较性研究报道。实验结果表明,压缩算法对于视觉单词数目以及编码方法具有良好的鲁棒性;其中基于子空间方法的压缩算法在高层图像特征空间中的分类性能最优,在多个图像数据集上的分类性能最优,时间开销最小。 相似文献
6.
7.
8.
传统词袋模型构建的词典不稳定,且忽略词向量先后顺序,在用其进行人体动作识别时,识别效果不稳定,尤其对倒序动作识别效果不佳。针对这些问题,提出一种基于时空联合频率直方图实现动作分类的方法。提取肢体关键角度信息,把关键角度的帧间差值作为时间特征描述子;构建稳定的时间词袋与空间词袋,利用其联合频率直方图表示动作序列,增强动作时间特性;利用支持向量机(SVM)实现动作分类。在一个具有挑战性的数据集-UTKinect数据集上进行实验,结果表明,相比于传统词袋模型与一些已有方法,该方法能够有效提高动作识别的准确率。 相似文献
9.
人耳识别技术是生物特征识别和人工智能领域的一个重要分支.针对人耳图像特有的纹理特征,首先采用空间金字塔视觉词袋模型进行人耳特征提取,该模型将人耳图像中相对低级的局部描述子特征转化为具有高级语义含义的全局特征.最后采用支持向量机对样本向量进行训练与判别.实验表明,本文所采用的模型能取得较高的识别率,可作为人耳识别方法的一种扩展与探索. 相似文献
10.
针对分布式拒绝服务(DDoS)攻击有效荷载快速变化,人工干预需要依赖经验设定预警阈值以及异常流量特征码更新不及时等问题,提出一种基于二进制流量关键点词袋(BSP-BoW)模型的DDoS攻击检测算法。该算法可以自动从当前网络的流量数据中训练得到流量关键点(SP),针对不同拓扑网络进行自适应异常检测,减少频繁更新特征集带来的人工成本。首先,对已有的攻击流量和正常流量进行均值聚类,寻找网络流量中的SP;然后,将原有的流量转化映射到相应SP上使用直方图进行形式化表达;最后,通过欧氏距离进行DDoS攻击的分类检测。在公开数据库DARPA LLDOS1.0上的实验结果表明,所提算法的异常网络流量识别率优于现有的局部加权学习(LWL)、支持向量机(SVM)、随机树(Random Tree)、logistic回归分析(logistic)、贝叶斯(NB)等方法。所提的基于词袋聚类模型算法在拒绝服务攻击的异常流量识别中有很好的识别效果和泛化能力,适合部署在中小企业(SME)网络流量设备上。 相似文献
11.
遥感影像解译精度的分析 总被引:3,自引:0,他引:3
遥感影像的解译精度是指遥感解译图的判对率或错判率。解译精度的分析是遥感影像解译工作中一项不可缺少的过程,它对于解译成果的评价和使用都具有十分重要的意。遥感影像解译精度分析的基本方法是在解译图上选取一定数量的样本进行检验。根据检验样本的判对率得出解译图的解译精度。为了使得到的解译精度可靠,样本的选取应按照抽样理论的方法来进行。但是,从目前的遥感影像解译工作来看,解译精度的分析还没有系统规范的方法,样本的选取大多数还是按照人为的主观选择来进行。抽样的方式和样本的大小缺少科学依据,使得得到的解译精度可 相似文献
12.
视觉词袋(Visual Bag-of-Words)模型在图像分类、检索和识别等计算机视觉领域有了广泛的应用,但是视觉词袋模型中词汇数目往往是根据经验确定或者采用有监督的交叉学习选取。提出一种确定视觉词袋模型中词汇数目的无监督方法,利用模型选择的思想来解决问题。使用高斯混合模型描述具有不同词汇数目的视觉词袋,计算各模型贝叶斯信息准则的值,选取贝叶斯信息准则最小值对应的词汇数目。与交叉验证的监督学习在图像分类实验的对比结果说明该方法准确有效。 相似文献
13.
14.
针对无人机影像背景复杂,城市在建道路分类易被相似目标、建设设施等信息干扰的问题,提出了基于改进U-Net模型的无人机影像在建道路提取模型。为获取更深层次的边界细节信息,采用Res2net结构分阶替换原有U-Net网络的卷积层,提高网络下采样深度;增加CBAM双注意力机制模块引于各分块特征信息之后,对空间和通道进行重新校准,强调道路特征,校正模型参数;引入改进的Dense ASPP模块,与前层次的细节信息拼接,增强道路区域上下文信息的获取能力。结果表明,所提出的改进U-Net网络训练的提取模型在精确率、召回率、F1分值、平均交并比等评价指标上,均优于传统的U-Net、DeeplabV3+、HRnet等网络模型,可有效提取建设道路各阶段信息,针对在建道路项目的施工进度监测提供方法支持。 相似文献
15.
与普通场景图像相比,无人机影像中纹理信息较丰富,局部特征与目标对象“一对多”的对应问题更加严重,经典SURF算法不适用于无人机影像的特征点匹配.为此,提出一种辅以空间约束的SURF特征点匹配方法,并应用于无人机影像拼接.该方法对基准影像整体提取SURF特征点,对目标影像分块提取SURF特征点,在特征点双向匹配过程中使用两特征点对进行空间约束,实现目标影像子图像与基准影像的特征点匹配;根据特征点对计算目标影像初始变换参数,估计目标影像特征点的匹配点在基准影像上的点位,对匹配点搜索空间进行约束,提高匹配速度与精度;利用点疏密度空间约束,得到均匀分布的特征点对.最后,利用所获取的特征点对实现无人机影像的配准与拼接,通过人工选取均匀分布的特征点对验证拼接精度.实验结果表明,采用本文方法提取的特征点能够得到较好的无人机影像拼接效果. 相似文献
16.
视觉词袋模型在基于内容的图像检索中已经得到了广泛应用,传统的视觉词袋模型一般采用SIFT描述子进行特征提取.针对SIFT描述子的高复杂度、特征提取时间较长的缺点,本文提出采用更加快速的二进制特征描述子ORB来对图像进行特征提取,建立视觉词典,用向量间的距离来比较图像的相似性,从而实现图像的快速检索.实验结果表明,本文提出的方法在保持较高鲁棒性的同时,明显高了图像检索的效率. 相似文献
17.
基于改进词袋模型的相似关键帧匹配方法 总被引:1,自引:0,他引:1
对相似关键帧匹配中存在的低效率及无法很好反映语义特征的问题进行了分析,提出了基于词袋模型的关键帧描述方法,并进一步考虑了视觉词汇表的生成、降维以及词项权重赋予等关键问题,最后利用词袋特征对相似关键帧进行匹配。实验结果表明,提出的基于改进词袋模型的相似关键帧匹配方法不仅能在一定程度上提高匹配准确率,并且能够较大幅度地提高相似关键帧匹配的速度。 相似文献
18.
19.
20.
规则网格是视觉词袋模型中常用的图像检测方法,该方法抽取图像所有区块,获得背景区块和目标区块完整的图像信息。事实上,抽取的背景区块信息对类别的判定往往会有一定的混淆作用。以“摩托车”类和“小汽车”类的图像为例,这两类图像背景特征相似,大多都是道路,一般的分类方法很可能将它们分为相同类别。可见,背景信息会干扰图像分类结果。因此,提出一种提取目标区域词袋特征的图像分类方法。利用图像分割去除背景信息提取目标区域;对目标区域构建视觉词袋模型;使用SVM分类器对图像进行分类。PASCAL VOC2006及PASCAL VOC2010数据集上的实验结果表明,提取目标区域词袋特征的图像分类方法具有较好的分类性能。 相似文献