首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
微惯性测量单元(MIMU)具有体积小、重量轻、成本低、可靠性高等特点,在军事及民用领域具有广阔的应用前景。从工程实际出发,给出了一种基于新型CORTEX-M4内核ARM和MEMS惯性传感器的低成本、高性能微型惯性测量单元。介绍了采用三轴MEMS陀螺和三轴MEMS加速度计设计微惯性测量单元的硬件实现方法。针对MEMS陀螺仪的随机漂移误差,对MEMS陀螺仪采样数据应用FIR滤波器和卡尔曼滤波器进行滤波处理;并针对MIMU对温度影响敏感的特点,对陀螺的温度特性进行分析,采用离线辨识的方法确定温度补偿模型参数,进行温度补偿。实验结果表明,滤波后陀螺仪随机漂移误差明显减小,补偿后的陀螺零偏稳定性明显降低。  相似文献   

2.
微机电系统(MEMS)陀螺仪的非线性误差是影响陀螺仪测量精度的主要因素之一。针对角速率标定法难以获得陀螺仪连续输出的问题。该文提出了一种角加速率标定实验方案,介绍了用二次标定方法解算出陀螺仪的零位误差系数、刻度因子、交叉耦合系数及非线性误差项的具体步骤。与常规补偿模型算法比较表明,此方法可快速标定陀螺仪的误差参数,补偿后的MEMS陀螺仪绝对误差小于0.084(°)/s,线性度提高了1~2个数量级。  相似文献   

3.
孔祥旗 《现代导航》2014,5(1):29-32
大量的实验研究已证明温度的变化是影响陀螺仪误差主要因素之一。为了抑制陀螺仪温度变化带来的误差影响,本文首先根据实验数据辨识出器件的温度模型,然后推导出相应的补偿模型进行温度补偿,并采用Kalman滤波技术降低温度测量的噪声,从而提高陀螺仪稳定性。  相似文献   

4.
微机电系统(MEMS)陀螺仪具有尺寸小,可靠性强的特点,已广泛应用于各种微姿态仪中,而陀螺的安装误差是影响姿态仪输出精度的主要因素之一。现有的陀螺安装误差模型是建立在确定的刻度因子和零偏基础上,但实际应用中,陀螺的刻度因子存在误差,且零偏随温度和转速发生变化。该文提出了一种改进的误差标定和补偿方法,并针对模型中MEMS的零偏温度和转速非线性误差问题,运用BP神经网络,实现了模型零偏动态补偿。实验表明,采用该文提出的标定方法,陀螺的角速率误差由1.5(°)/s提高至0.05(°)/s。验证了标定方法的可行性。  相似文献   

5.
为了减小正交耦合误差对硅微电子机械系统(MEMS)陀螺仪性能的影响,提高陀螺仪零偏精度,对MEMS陀螺仪正交耦合补偿技术进行研究.建立MEMS陀螺仪动力学模型,分析正交耦合产生的原因,介绍了各类正交耦合补偿机理.设计了一款可实现静电刚度补偿的MEMS陀螺仪,并利用绝缘体上硅(SOI)工艺进行制备.利用现场可编程门阵列(...  相似文献   

6.
微机电系统(MEMS)陀螺仪体积很小,开机时产生的功耗会导致较大升温,造成电性能漂移严重,增加启动时间。为解决这个问题,分析了MEMS陀螺仪中对温度敏感的环节,并建立温度模型。通过对温度特性的补偿得到最小化的开机漂移。然后设计了一款MEMS陀螺仪电路以实现开机漂移的补偿。实测结果表明,采用该补偿方法,能够把100 s内的开机漂移减小到0.06°/s,满足应用需求。  相似文献   

7.
针对传统的磁罗盘补偿方法计算量大、需要标定设备的问题,提出了一种利用陀螺仪相对航向辅助校准的方法。在分析磁罗盘误差的基础上建立了误差模型,采用梯度下降法解出姿态信息对磁场数据进行倾斜补偿,在陀螺仪相对航向角的辅助下,采用最小二乘法拟合经过倾斜补偿后的磁场数据求解出误差模型的系数。实验数据表明,该算法能够有效的对磁罗盘误差进行补偿,可以将磁罗盘的航向角测量误差控制在1°之内。  相似文献   

8.
为了减少温度对微机电系统(MEMS)陀螺仪测量精度的影响,改进了一种不需要测量温度的MEMS陀螺温度误差建模与补偿方法。该方法首先通过多项式拟合得到MEMS陀螺全温区零偏与温度的多项式模型,并根据最小二乘法原理确定模型阶数,然后通过分析温度对驱动轴相位的影响,得到驱动轴相位的温度模型,最后得到零偏与驱动轴相位的多项式拟合模型并针对该模型对陀螺零偏进行补偿。实验结果表明,该方法能降低温度造成的陀螺误差,提高MEMS陀螺的使用精度。  相似文献   

9.
吴英  蒋博  邸克  邹新海  刘宇 《压电与声光》2020,42(3):409-412
微机电系统(MEMS)陀螺仪具有体积小、精度高、应用前景广等优点。由于惯性器件材料的热阻值、热应力差异,对应传感器输出会产生温度滞后效应,严重影响了陀螺仪零偏稳定性。针对传统陀螺仪温度误差补偿法适应性较差的问题,该文利用滑动平均算法(MAA),提出了一种温度滞后零偏补偿模型,在全温范围内对MEMS陀螺仪零偏进行补偿。实验结果表明,补偿后陀螺仪工作温度在-30~+90 ℃变化时,对应的零偏标准偏差从0.21 (°)/s降至0.02 (°)/s,零偏稳定性提升了近1个数量级。  相似文献   

10.
为了得到基于微机电系统(MEMS)运动传感器的微飞行器的姿态角的输出,该文从理论和实验角度进行了全面分析。首先基于MEMS运动传感器的加速度计与磁力计理论计算了微飞行器的初始姿态及其最大误差范围,然后基于MEMS运动传感器的陀螺仪计利用时间序列自回归滑动平均模型(ARMA)分析方法对原始角速度进行误差建模,并利用卡尔曼滤波进行误差补偿,并通过积分法到更高精确度的姿态角度的算法,最后利用转台实验对其进行验证。通过该算法,对于任何MEMS九轴传感器,由实验确定相应的参数后,即可得到该传感器更高精确度的姿态角的输出。  相似文献   

11.
针对微机电系统(MEMS)仪表零偏受温度变化影响较大的问题,该文提出了一种基于引力搜索算法-支持向量回归(GSA-SVR)的MEMS零偏温度漂移补偿方法。先通过小波变换对MEMS陀螺和MEMS加速度计输出信号进行预处理,再采用GSA-SVR算法对MEMS在不同工作状态下进行温度建模并补偿。实验结果表明,在稳定工作阶段,与补偿前相比,补偿后加速度计和陀螺的输出标准差分别降低了90%和85%。与传统SVR相比,该文方法准确性较高,实用性较好,GSA-SVR算法将加速度计和陀螺输出的标准差分别降低了6%和10%。  相似文献   

12.
针对微电子机械系统(MEMS)陀螺温度变化影响其零偏误差的问题,提出了一种基于粒子群优化(PSO)和径向基函数(RBF)神经网络的陀螺零偏补偿方法.通过RBF神经网络对预处理后的陀螺零偏的温度误差建立模型,用PSO 搜索RBF神经网络的最优参数来提高其泛化能力后,将PSO-RBF神经网络最优参数用于补偿陀螺零偏.实验结果证明了该算法的有效性,经PSO-RBF神经网络算法补偿后,MEMS陀螺零偏的最大误差从0.046(°)/s减小到0.003 4(°)/s,标准差从0.042 7(°)/s减小到0.001 3(°)/s,有效提升了陀螺的零偏稳定性.  相似文献   

13.
温度是影响激光陀螺零偏的重要因素。将激光陀螺零偏分成与温度无关的常值零偏和与温度有关的趋势项零偏两部分,常值零偏可通过标定实验补偿。对于趋势项零偏,在-40~+60℃全温范围内,通过大量的重复性温度实验,建立了趋势项零偏与温度变化的分段多项式回归模型。运用该模型对高低温实验数据进行补偿,然后进行标定补偿,补偿后结果表明,基本上消除了陀螺零偏,且满足工程上的实时性要求。因此,该补偿方法具有很强的工程实用价值。  相似文献   

14.
孙佳  邹靖  胡桐 《压电与声光》2019,41(3):440-444
针对微惯性测量单元原始输出信息受零偏、标度因数、非正交误差等误差项干扰影响测量精度的问题,提出一种无需借助高精度转台的MEMS IMU快速原位标定方案。在分析MEMS惯性传感器输出特性的基础上建立传感器误差模型,利用六面体夹具设计IMU 24位置连续转停标定方案,以重力及各次旋转角度为参考信息完成传感器误差标定。针对加速度计零偏、标度因数、非正交误差9个参数构造标定模型,采用牛顿法估计误差参数最优值,考虑陀螺仪零偏与标度因数6个误差参数,利用最小二乘法计算误差参数最优估值。分别进行加速度计、陀螺标定补偿实验,实验结果表明,提出的MEMS IMU快速原位标定方法能快速得到传感器误差参数,提高了输出数据精度。  相似文献   

15.
温度对微机电系统(MEMS)陀螺零偏影响较大,是影响其测量精度的主要因素之一。该文通过温度循环试验,建立了陀螺零偏与温度间的关系。采用多元逐步回归法和温度分段插值法建立了陀螺零偏温度补偿模型。试验结果证明,两种方法均能准确地反映陀螺零偏随温度变化的情况,且温度分段插值法可以消除明显的趋势项。与多元逐步回归法相比,补偿后全温零偏误差的峰峰值由0.025 (°)/s减小到0.015 (°)/s,全温零偏稳定性由32.9 (°)/h提高到14.2 (°)/h。  相似文献   

16.
该文提出了一种单轴微机电系统(MEMS)热膨胀流陀螺的基本结构,并揭示了其敏感机理。通过有限元法,利用COMSOL Multiphysics建立了陀螺的三维模型,在有无角速度时对陀螺敏感元件的温度场和等温线变化情况进行计算。结果表明,单轴MEMS热膨胀流陀螺具有陀螺效应,输入角速度为[-1 080 (°)/s, 1 080 (°)/s],陀螺的结构灵敏度为0.053 9 K/[(°)·s-1],非线性度为14.13%。  相似文献   

17.
党进伟  翟永久 《现代导航》2019,10(3):173-176
针对 MEMS 惯性器件精度较低,MEMS 惯导系统无法满足平台姿态精度要求的问题,本文提出了一种基于 MEMS 器件的测姿、定向方法。当载体近匀速运动时,利用加速度计和磁力计信息,采用垂直陀螺原理得到高精度的姿态信息,通过卡尔曼滤波估计出陀螺漂移,载体非近匀速运动时采用惯性姿态递推更新算法,补偿修正力矩和陀螺漂移误差,提高了载体的测姿定向精度。实验测试结果表明,采用本文的测姿定向方法后 MEMS 系统的姿态精度达到了 0.6°, 精度明显高于传统方法的精度,能够满足大多数中高精度平台的要求。  相似文献   

18.
安装误差和温度是MEMS微惯性组合的主要误差源,这两种因素所引起的误差通常占系统总误差的90%以上。通过对微惯性组合的安装误差及温度因素的影响进行深入分析,构建了一种适用于低成本导航微惯性组合静态误差补偿模型。该模型是一种基于线性模型的改进型模型,模型复杂度低,按实验标定方法获取模型参数后可实时计算惯组输出,用于对MEMS微惯性组合实时性要求高的环境中。并且,通过对模型深入分析,巧妙设计标定方法,大大简化了该模型的标定步骤,使模型参数的获取更为方便。为了论证模型正确性,进行了标定实验,实验结果表明模型是切实可靠的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号