首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Geothermics》2001,30(1):29-68
The worldwide application of geothermal energy for direct utilization is reviewed. This paper attempts to update the previous survey carried out in 1995 (Freeston, 1995) and presented at the World Geothermal Congress 1995 in Florence, Italy. For each of these updates since 1975, the recording of data has been similar, but not exactly the same. As in 1995, an effort was made to quantify geothermal heat pump data and the investment in geothermal energy development. Final update papers were received from 60 countries, of which 55 reported some form of geothermal direct utilization. Three additional countries were added to the list based on other sources of information. An estimate of the installed thermal power at the beginning of 2000 (1995 values in brackets) from the current reports is 15,145 MWt [8664 MWt] utilizing at least 52,746 kg/s [37,050 kg/s] of fluid, and the thermal energy used is 190,699 TJ/yr [112,441 TJ/yr]. The distribution of the thermal energy used by category is approximately 42% for bathing and swimming pool heating, 23% for space heating, 12% for geothermal heat pumps, 9% for greenhouse heating, 6% for aquaculture pond and raceway heating, 5% for industrial applications, 2% for other uses, and less than 1% each for agricultural drying, snow melting, and air conditioning. The reported data for number of wells drilled was 1028, the work by professionals over the five-year period was 3363 person-years, and the total investment over the same five years was 841 million US$, indicating minimum values.  相似文献   

2.
Direct application of geothermal energy: 2005 Worldwide review   总被引:5,自引:1,他引:5  
This paper is a review of worldwide direct applications of geothermal energy. It attempts to update the surveys presented at and after the World Geothermal Congresses of 1995, 2000 and 2005. Seventy-two countries report direct utilization of geothermal energy. In May 2005, the direct-use projects had an estimated installed thermal capacity of 28,268 MWt. The thermal energy usage is 273,372 TJ/year (75,943 GWh/year), a 43% increase over 2000; the annual compound growth rate is 7.5%.The distribution of thermal energy used by category is approximately 32% for geothermal heat pumps, 30% for bathing and swimming (including balneology), 20% for space heating (of which 83% is for district heating), 7.5% for greenhouse and open-ground heating, 4% for industrial process heat, 4% for aquaculture pond and raceway heating, <1% for agricultural drying, <1% for snow melting and cooling, and <0.5% for other uses. The equivalent annual savings in fuel oil amounts to 170 million barrels (25.4 million tonnes) and 24 million tonnes in carbon emissions to the atmosphere.  相似文献   

3.
Direct heat utilization of geothermal resources   总被引:1,自引:0,他引:1  
Direct utilization of geothermal energy consists of various forms for heating and cooling instead of converting the energy for electric power generation. The major areas of direct utilization are (1) swimming, bathing and balneology, (2) space heating and cooling including district heating, (3) agriculture applications, (4) aquaculture applications, (5) industrial processes, and (6) heat pumps. Major direct utilization projects exploiting geothermal energy exist in about 38 countries, and the estimated installed thermal power is almost 9,000 MWt utilizing 37,000 kg/s of fluid. The world-wide thermal energy used is estimated to be at least 108,100 TJ/yr (30,000 GWh/yr) - saving 3.65 million TOE/yr. The majority of this energy use is for space heating (33%), and swimming and bathing (19%). In the USA the installed thermal power is 1874 MWt, and the annual energy use is 13,890 TJ (3,860 GWh). The majority of the use (59 %) is for heat pumps (both ground coupled and water source), with space heating, bathing and swimming, and fish and animal farming each supplying about 10%.  相似文献   

4.
Direct utilization of geothermal energy 2010 worldwide review   总被引:4,自引:0,他引:4  
This paper presents a review of the worldwide application of geothermal energy for direct utilization, and updates the previous survey carried out in 2005. We also compare data from 1995 and 2000 presented at World Geothermal Congresses in Italy and Japan, respectively (WGC95 and WGC2000). As in previous reports, an effort is made to quantify ground-source (geothermal) heat pump data. The present report is based on country update papers prepared for WGC2010 and other sources of data available to the authors. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy. Twelve additional countries were added to the list based on other sources of information. Direct utilization of geothermal energy in 78 countries is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009 is used in this paper and equals 48,493 MWt, almost a 72% increase over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr), about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology), 14.9% for space heating (of which 85% is for district heating), 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes) of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere, this includes savings for geothermal heat pumps in the cooling mode (compared to using fuel oil to generate electricity).  相似文献   

5.
This paper describes the status of geothermal energy utilization—direct use—in Hungary, with emphasis on developments between 2000 and 2002. The level of utilization of geothermal energy in the world increased in this period and geothermal energy was the leading producer, with 70% of the total electricity production, of all the renewable energy sources (wind, solar, geothermal and tidal), followed by wind energy at 28%. The current cost of direct heat use from biomass is 1–5 US¢/kWh, geothermal 0.5–5 US¢/kWh and solar heating 3–20 US¢/kWh. The data relative to direct use in Hungary decreased in this period and the contribution of geothermal energy to the energy balance of Hungary, despite significant proven reserves (with reinjection) of 380 million m3/year, with a heat content of 63.5 PJ/a at ΔT=40 °C, remained very low (0.25%). Despite the fact that geothermal fluids with temperatures at the surface higher than 100 °C are available, no electricity has been generated. As of 31 December 2002, the geothermal capacity utilised in direct applications in Hungary is estimated to be 324.5 MWt and to produce 2804 TJ/year. Geothermal heat pumps represent about 4.0 MWt of this installed capacity. The quantity of thermal water produced for direct uses in 2002 was approximately 22 million m3, with an average utilization temperature of 31 °C. The main consumer of geothermal energy is agriculture (68% of the total geothermal heat dedicated to direct uses). The geothermal water is used only in five spas for space heating and sanitary hot water (SHW), although there are 260 spas in the country, and the thermal water produced has an average surface temperature of 68 °C. The total heat capacity installed in the spas is approximately 1250 MWt; this is not provided by geothermal but could be, i.e., geothermal could provide more than three times the geothermal capacity utilized in direct uses by 31 December 2002 (324.5 MWt).  相似文献   

6.
After a brief review of the nature, origin and occurrence of geothermal energy, the various conceptual models of geothermal systems are described.Subsequently the different utilizations of terrestrial heat (direct, indirect and combined) are described and the related production technologies are briefly illustrated.Following a historical overview of the development of geothermal energy, the current situation is presented (4719 MW electric and 12,000 MW thermal) and a projection for the end of the century is made (20,000–40,000 MWe and 19,000–33,000 MWt).A breakdown of geothermal projects and a block diagram of the costs and various activities is then presented and an average expenditure value is given.Finally, the role of geothermal energy in the overall energy context is discussed, as well as the main problems, both technical and non-technical, that will have to be faced in the future.  相似文献   

7.
Geothermal energy is a technically-proven, cost effective source of electrical and thermal energy that has been utilized for many decades. Recent estimates indicate that over 6700 MWe (megawatts electrical) and 8200 MWt (megawatts thermal) are currently developed throughout the world. This paper discusses the specific environmental advantages to the development of geothermal electrical power and direct use projects and demonstrates how environmental impacts can be easily mitigated using existing technologies. In the areas of CO2, NOx, and SO2 emissions, land disturbance per MWe and disposal of waste products, geothermal energy has significantly fewer impacts than most other energy sources, particularly conventional fossil and nuclear fuels. Examples are sited where geothermal developments have occurred in pristine areas with no significant impacts and even offering the opportunity for improving environmental conditions. There is a strong need for energy policy makers throughout the world to recognize the environmental advantages of geothermal energy and to incorporate their economic value when pricing and selecting new sources of energy.  相似文献   

8.
Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity (gross) for electric power generation is about 2020 MWe, with 1902 MWe net delivering power to the grid, producing approximately 16,000 GWh per year for a 96% capacity factor. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The latest development at The Geysers, due to recent declines in steam output, is the injection of recycled wastewater from two communities into the reservoir, which has at present permitted the recovery of 70 MWe of power generation. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is about 4350 MWt and the annual energy use is 22,250 TJ, or 6181 GWh. The largest application is that of ground-source (geothermal) heat pumps (60% of the energy use), and the largest direct-use is that of aquaculture pond and raceway water heating. Direct utilization is increasing at about 6% per year, whereas electric power plant development is almost static. The energy savings from electric power generation, direct uses and ground-source heat pumps amount to 6.6 million tonnes of equivalent fuel oil per year and represents a reduction in air pollution of 5.8 million tonnes of carbon annually (compared to fuel oil).  相似文献   

9.
Turkey is an energy importing nation with more than half of our energy requirements met by imported fuels. Air pollution is becoming a significant environmental concern in the country. In this regard, geothermal energy and other renewable energy sources are becoming attractive solution for clean and sustainable energy future for Turkey. Turkey is the seventh richest country in the world in geothermal energy potential. The main uses of geothermal energy are space heating and domestic hot water supply, greenhouse heating, industrial processes, heat pumps and electricity generation. The district heating system applications started with large-scale, city-based geothermal district heating systems in Turkey, whereas the geothermal district heating centre and distribution networks have been designed according to the geothermal district heating system (GDHS) parameters. This constitutes an important advantage of GDHS investments in the country in terms of the technical and economical aspects. In Turkey, approximately 61,000 residences are currently heated by geothermal fluids. A total of 665 MWt is utilized for space heating of residential, public and private property, and 565,000 m2 of greenhouses. The proven geothermal heat capacity, according to data from existing geothermal wells and natural discharges, is 3132 MWt. Present applications have shown that geothermal energy is clean and much cheaper compared to the other fossil and renewable energy sources for Turkey.  相似文献   

10.
11.
Potential resources and applications of earth heat in the form of geothermal energy are large. World-wide direct uses amount to 7072 MW thermal above a reference temperature of 35°C. District heating is the major direct use of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are district heating and cooling, greenhouse heating and fish farming, process and industrial applications, combined and cascading uses. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Reykjavík, Klamath Falls, Melun l'Amont and Svartsengi. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.  相似文献   

12.
In Korea, ground source heat pumps (GSHP) have been gaining popularity for space heating and cooling. Because there are few sources of high-temperature geothermal energy in the country, public baths (25–40 °C) and geothermal heat pumps (~15 °C) using low-temperature groundwater or ground are the most dominant direct geothermal uses. The Promotion Law of the New and Renewable Energy Development, Use and Dissemination, enacted in 2004, imposed an obligatory installation of space heating and cooling systems using new and renewable energy sources including geothermal energy for newly constructed public buildings (more than 5% of total construction cost). Between 2004 and 2007, ground source heat pump systems occupied about 60% of the total public installation of new and renewable energy equipment. Starting with 35.2 kW of two facilities in 2000, systems with the capacity of over 127.1 MWt have been installed in 551 buildings (facilities) as of August 2008. The vertical closed heat pump system (closed loop) and the groundwater heat pump system (standing column well type; SCW) occupied 65.1% and 29.3%, respectively, among the total GSHP systems installed. The depth of the vertical loops ranged between 65 and 250 m (average 159 m) and the well depth of the SCW system ranged between 150 and 600 m (average 391 m). The number of geothermal energy companies, installing the GSHP systems, that are officially registered in the relevant authority increased from 5 in 2000 to 397 in July 2008. This paper presents details of the current status of ground source heat pumps in Korea.  相似文献   

13.
This paper investigates the status of geothermal development in Turkey as of the end of 1999. Turkey is one of the countries with significant potential in geothermal energy. Resource assessments have been made many times by the Mineral Research and Exploration Directorate (MTA) of Turkey. The main uses of geothermal energy are mostly moderate‐ and low‐temperature applications such as space heating and domestic hot water supply, greenhouse heating, swimming and balneology, industrial processes, heat pumps and electricity generation. The data accumulated since 1962 show that the estimated geothermal power and direct use potential are about 4500 MWe and 31 500 MWt, respectively. The direct use capacity in thermal applications is in total 640 MWt representing only 2 per cent of its total potential. Since 1990, space heating and greenhouse developments have exhibited a significant progress. The total area of greenhouses heated by geothermal energy reached up to about 31 ha with a heating capacity of 69.61 MWt. A geothermal power plant with a capacity of 20.4 MWe and a CO2 factory with a capacity of 40000 ton yr?1 have been operated in the Denizli‐Kizildere field since 1984 and 1986, respectively. Ground source heat pumps have been used in residential buildings for heating and cooling for approximately 2 years. Present applications have shown that geothermal energy in Turkey is clean and much cheaper compared to the other energy sources like fossil fuels and therefore is a promising alternative. As the projects are recognized by the public, the progress will continue. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Geothermal energy is the energy contained as heat in the Earth’s interior. This overview describes the internal structure of the Earth together with the heat transfer mechanisms inside mantle and crust. It also shows the location of geothermal fields on specific areas of the Earth. The Earth’s heat flow and geothermal gradient are defined, as well as the types of geothermal fields, the geologic environment of geothermal energy, and the methods of exploration for geothermal resources including drilling and resource assessment.Geothermal energy, as natural steam and hot water, has been exploited for decades to generate electricity, and both in space heating and industrial processes. The geothermal electrical installed capacity in the world is 7974 MWe (year 2000), and the electrical energy generated is 49.3 billion kWh/year, representing 0.3 % of the world total electrical energy which was 15,342 billion kWh in 2000. In developing countries, where total installed electrical power is still low, geothermal energy can play a significant role: in the Philippines 21% of electricity comes from geothermal steam, 20% in El Salvador, 17% in Nicaragua, 10% in Costa Rica and 8% in Kenya. Electricity is produced with an efficiency of 10–17%. The geothermal kWh is generally cost-competitive with conventional sources of energy, in the range 2–10 UScents/kWh, and the geothermal electrical capacity installed in the world (1998) was 1/5 of that from biomass, but comparable with that from wind sources.The thermal capacity in non-electrical uses (greenhouses, aquaculture, district heating, industrial processes) is 15,14 MWt (year 2000). Financial investments in geothermal electrical and non-electrical uses world-wide in the period 1973–1992 were estimated at about US$22,000 million. Present technology makes it possible to control the environmental impact of geothermal exploitation, and an effective and easily implemented policy to encourage geothermal energy development, and the abatement of carbon dioxide emissions would take advantage from the imposition of a carbon tax. The future use of geothermal energy from advanced technologies such as the exploitation of hot dry rock/hot wet rock systems, magma bodies and geopressured reservoirs, is briefly discussed. While the viability of hot dry rock technology has been proven, research and development are still necessary for the other two sources. A brief discussion on training of specialists, geothermal literature, on-line information, and geothermal associations concludes the review.  相似文献   

15.
China is troubled by a shortage of energy sources. This shortage is even more serious in rural areas. However, about 3000 active hydrothermal systems are spread over China's territory and are presumed to be related either to intraplate or to plate marginal thermal anomalies. Their energy content could, in some cases, make a valid contribution to the local energy demand. Electricity is at present generated in Yangbajain geothermal field (10 MW), direct uses still represent a very minor utilization. Geothermal research is under way all over the country.  相似文献   

16.
《Geothermics》1988,17(1):119-136
Direct uses of geothermal energy are important in many countries of the world. Well-known examples are district heating (hitaveita) in Iceland, industrial processing in New Zealand, greenhouse heating in Hungary, and traditional bathing uses in Japan. Although direct uses are also called non-electrical applications, they span the whole range of geothermal temperatures, as evident from the Lindal Diagram shown in Fig. 1. A recent paper on direct uses is that of Gudmundsson and Lund (1985). Because of the many possible applications of geothermal energy, there is a need to identify the main elements that make up direct use projects. The purpose of this paper is to consider these elements, in an attempt to better organize the field of geothermal engineering. The paper concerns the technologies needed to bring geothermal fluids from resource to user. However, corrosion and water quality matters are not discussed, neither are environmental issues. Geothermal drilling, production and reservoir engineering are also outside the scope of this paper.  相似文献   

17.
Geothermal energy is extensively used in thermal (direct) applications in Iceland. More than 70% of the total population enjoy geothermal district heating. Hydro-power provides most of the electricity generated in Iceland, with less than 10% of the potential harnessed. Iceland is well endowed with both geothermal (high- and low-temperature) and hydro-power resources. At the end of 1980, the installed geothermal power in Iceland was 818 MW1 in direct applications and 41 MWe in electric power generation. This exploitation represents a few percent of the estimated geothermal resources of Iceland. Plans to develop geothermal electric power in Iceland date back to the early 1960s. The first geothermal electric power plant (3 MWe) was installed in 1969. In recent years, several small-scale (two 1 MWe and one 6 MWe) geothermal power units have been installed in a cogeneration plant for district heating purposes. There is one major (30 MWe) geothermal electric power plant in Iceland, which became operational in 1978. Hydro-power, geothermal energy and oil provide consumers in Iceland with about 18, 38, and 44% of their energy needs, respectively.  相似文献   

18.
The geothermal resources in Algeria are of low-enthalpy type. Most of these geothermal resources are located in the northeastern of the country. There are more than 240 thermal springs in Algeria. Three geothermal zones have been delineated according to some geological and thermal considerations: (1) The Tlemcenian dolomites in the northwestern part of Algeria, (2) carbonate formations in the northeastern part of Algeria and (3) the sandstone Albian reservoir in the Sahara (south of Algeria). The northeastern part of Algeria is geothermally very interesting. Two conceptual geothermal models are presented, concerning the northern and southern part of Algeria. Application of gas geothermometry to northeastern Algerian gases suggests that the reservoir temperature is around 198 °C. The quartz geothermometer when applied to thermal springs gave reservoir temperature estimates of about 120 °C. The thermal waters are currently used in balneology and in a few experimental direct uses (greenhouses and space heating). The total heat discharge from the main springs and existing wells is approximately 642 MW. The total installed capacity from producing wells and thermal springs is around 900 MW.  相似文献   

19.
The impacts of recurrent droughts have increased vulnerability and reduced the adaptive capacity of the people living in arid and semi-arid lands (ASALS) of Kenya. Current interventions are short-term and curative in nature, hence unsustainable. Some of the most arid and semi-arid lands are located within the Kenyan Rift system, which has an estimated geothermal potential of about 7000 to 10,000 MWe, out of which only 200 MWe has been developed, and about 5000 MWe planned by 2030. Recent power sector reforms have built institutional structures that will accelerate development of geothermal energy. The paper analyses the potential use of geothermal energy resources in eastern Baringo lowlands between Lake Bogoria and Silali prospects, which has an estimated potential of >2700 MWe, in creating the necessary adjustments needed to adapt to the impacts of recurrent droughts by locals. Opportunities for direct and indirect uses of geothermal energy exist in climate vulnerable sectors, such as, agriculture, fisheries, water, livestock production as well as alternative income generating activities such as, tourism, micro enterprises, aloe, honey and beeswax production, fabric dyeing and others using resources sourced from within a 50 km radius. The possibility of accelerated geothermal development and proposed utilisation schemes in causing maladaptation if unsustainably implemented is also discussed. The paper draws a Lindal diagram adapted to the study area showing potential utilisation in the above sectors, and new flow diagram showing potential for cascaded use of geothermal hot water through the different processes. An estimated capacity of 100 MWt and 100 MWe can be used in the potential utilisation schemes discussed in this article to meet local adaptation and lighting needs and much less in a cascaded process. Potential barriers and possible solutions are also discussed. The study concludes that geothermal energy is a vital option for adaptation in the study area if sustainably used.  相似文献   

20.
地热资源的开发利用及可持续发展   总被引:2,自引:0,他引:2  
地热资源作为一种新型能源矿产,具有分布广泛、易于开发等特点,其利用方式主要有地热发电和地热直接利用两种.我国具有良好的地热资源条件,主要为中低温地热资源.据计算,我国12个主要沉积盆地的地热可开采资源量为7500×1018J,相当于2560×108t标煤.当前,我国地热资源利用方式主要以供暖、洗浴、种植等直接利用为主;地热发电发展缓慢,主要分布在西藏;利用热泵技术开发地热资源得到了快速发展;油区地热资源的开发利用也取得了良好的经济和社会效益.但同时我国地热资源产业也面临着一些问题,包括大部分地区尚未开展地热资源勘查评价,影响了地热资源规划的制订及地热产业的发展;防腐、防垢技术还需要进一步加强研究;地热回灌率普遍过低;增强型地热系统研究有待加强等.为了促进地热资源的可持续发展,建议在加大地热资源勘查力度的同时,应以浅层地温能和热水型地热资源为主,发挥热泵技术的优势,开展地热资源的综合利用及梯级利用;重视和加快油气区地热资源的利用;在西藏等适宜地区加大高温地热能发电利用;集中全国优势技术力量,在一两个有利区域开展增强型地热系统技术探索;此外,走回灌开发道路是地热资源开发利用的必然选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号