首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Microwave Sintering of Alumina at 2.45 GHz   总被引:3,自引:0,他引:3  
The sintering kinetics and microstructural evolution of alumina tubes (∼17 mm length, ∼9 mm inner diameter, and ∼11 mm outer diameter) were studied by conventional and microwave heating at 2.45 GHz. Temperature during microwave heating was measured with an infrared pyrometer and was calibrated to ±10°C. With no hold at sintering temperature, microwave-sintered samples reached 95% density at 1350°C versus 1600°C for conventionally heated samples. The activation energy for microwave sintering was 85 ± 10 kJ/mol, whereas the activation energy for conventionally sintered samples was 520 ± 14 kJ/mol. Despite the difference in temperature, grains grew from ∼1.0 μm at 86% density to ∼2.6 μm at 98% density for both conventionally sintered and microwave-sintered samples. The grain size/density trajectory was independent of the heating source. It is concluded that the enhanced densification with microwave heating is not a consequence of fast-firing and therefore is not a result in the change in the relative rates of surface and grain boundary diffusion in the presence of microwave energy.  相似文献   

2.
Crack-healing behavior of silicon carbide ceramics sintered with AlN and Sc2O3 has been studied as a function of heat-treatment temperature and applied stress. Results showed that heat treatment in air could significantly increase the indentation strength whether a stress is applied or not. After heat treatment with no applied stress at 1300°C for 1 h in air, the indentation strength of the specimen with an indentation crack of ∼100 μm (≈2c) recovered its strength fully at room temperature. In addition, a simple heat treatment at 1200°C for 5 h under an applied stress of 200 MPa in air resulted in a complete recovery of the unindented strength at the healing temperature. However, higher applied stress led to fracture of the specimens during heat treatment. The static fatigue limit of the specimens crack healed at 1200°C for 5 h under 200 MPa was ∼450 MPa at the healing temperature. The ratio of the static fatigue limit of the crack-healed specimen to the unindented strength was ∼80%.  相似文献   

3.
A microwave/conventional hybrid furnace has been used to anneal virtually fully dense zinc oxide ceramics under pure conventional and a microwave/conventional hybrid heating regime with a view to obtaining evidence for the "microwave effect" during the resulting grain growth. In each case it was ensured that each sample within a series had an identical thermal history in terms of its temperature/time profile. The results showed that grain growth was enhanced during hybrid heating compared with pure conventional heating; the greatest enhancement, a factor of ∼3 increase in average grain size, was observed in the range 1100°–1150°C. The grain growth exponent decreased from 3 during conventional heating to 1.4 during hybrid heating in this temperature range, suggesting an acceleration of the diffusional processes involved. Temperature gradients within the samples were found to be too small to explain the results. This suggests that clear evidence has been found to support the existence of a genuine "microwave effect."  相似文献   

4.
《Drying Technology》2012,30(15):1707-1713
This study attempted to quantify the effect of microwave-assisted desorption of water vapor from a zeolite packed bed. Specifically, an experiment was carried out comparing water vapor desorption using hot air and microwave heating. In the experiment, the temperature in the zeolite packed bed and humidity at the inlet and outlet of the adsorption column were measured.Then, the heat transfer behavior was quantified by calculating the heat balance of a zeolite packed bed, and the effect of microwave irradiation was examined. The results showed that microwave heating is effective for desorption at the beginning.  相似文献   

5.
Crack-Healing Behavior of Liquid-Phase-Sintered Silicon Carbide Ceramics   总被引:1,自引:0,他引:1  
Crack-healing behavior of liquid-phase-sintered (LPS) SiC ceramics has been studied as functions of heat-treatment temperature and crack size. Results showed that heat treatment in air could significantly increase the indentation strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature depends on the softening temperature of an intergranular phase in each material. After heat treatment at the optimum temperature in air, the crack morphology almost entirely disappeared and the indentation strength recovered to the value of the smooth specimens at room temperature for the investigated crack sizes up to ∼200 μm. In addition, a simple heat treatment of SiC ceramics sintered with Al2O3–Y2O3–CaO at 1100°C for 1 h in air resulted in even further improvement of the strength, to a value of 1054 MPa (∼150% of the value of the unindented strength). Crack closure and rebonding of the crack wake due to oxidation of cracked surfaces were suggested as a dominant healing mechanism operating in LPS-SiC ceramics.  相似文献   

6.
The effect of internal heating by microwave on the drying behavior of a slab was studied. A wet sample of kaolin pressed into a slab was subjected in microwave irradiation of 2.45 GHz. The absorption of microwave energy into a wet slab can be expressed by a function of the moisture content and the pathway length, which is a similar form to Lambert-Beer's law. The drying behavior was compared among three modes: microwave irradiation, hot air heating and radiation heating in an oven. Microwave heating with a constant power resulted in breaking the sample when the internal temperature achieves at 373 K. However, if the power was controlled to maintain the temperature less than the boiling point of water, the drying succeeded without any crack generation until the completion with a significantly faster drying rate than in convective heating or in the oven. It is also noted that the transient behavior of the temperature is quite different from the conventional drying.  相似文献   

7.
《Drying Technology》2013,31(9):1855-1867
ABSTRACT

A mathematical model of coupled heat and mass transfer was applied to batch fluidized-bed drying with microwave heating of a heat sensitive material—carrot. Four kinds of microwave heating with intermittent variation were examined. The numerical results show that different microwave heating patterns can affect the fluidized bed drying significantly. Changing the microwave input pattern from uniform to intermittent mode can prevent material from overheating under the same power density. Supplying more microwave energy at the beginning of drying can increase the utilization of microwave energy while keeping temperature low within the particle. For a particle diameter of 4 mm, fluidization velocity of 2 m/s, inlet airflow temperature of 70°C and the bed area factor of 80, the drying time are 750 and 1000 s, respectively, for the two good operating conditions with on/off periods of 125/375 s and 375/375 s. The cumulative microwave energy absorbed by particles at the end of drying is 1415 and 2300 kJ/kg (dry basis), respectively.  相似文献   

8.
This work presents a new pilot plant continuous microwave dry‐media reactor (CMDR) for industrial chemical applications. The CMDR consists of a 6 kW conveyor microwave oven with a subsequent hot air holding section. This microwave reactor has been designed for dry media or solvent‐free reactions and can treat through‐put in the range of 10–100 kg/h. The microwave heating behavior on the small scale is analyzed and the results are used to estimate the electromagnetic field requirements on the large scale. The temperature and the electric field distribution in the reactor are modeled and experimentally validated. In the second part of this study, a “waxy” esterification reaction was investigated with the CMDR. The reaction time needed for 95% yield was reduced by a factor of 20–30 compared to conventional industrial reactors. This was due to the more homogeneous heat transfer of microwaves, which allows a higher bulk temperature to be reached.  相似文献   

9.
The dielectric behavior of glassy thermoplastic polymer in the microwave frequency range was investigated. Specifically, the relationship between energy absorption and temperature for several thermoplastic systems was examined to test the theoretical basis for heating under microwave irradiation. Irradiation under traveling and standing wave conditions were explored. The heating rate versus temperature data at a frequency of 2.45 GHz yielded a microwave calorimetry procedure for examination of the dielectric and relaxation behaviors. Correlations were drawn between (a) the apparent activation energy and the critical temperature, and (b) the shape of the dielectric spectra at 2.45 GHz and its shape in the kHz region. WLF relationships were examined for glassy thermoplastics to show the difference in changing activation energy with temperature.  相似文献   

10.
In this paper some experimental results showing the influence of inclination of a cylindrical heating surface immersed in an air duct on heat transfer coefficient are presented. The experiments were performed in a laboratory-scaled apparatus of square cross section with dimensions 120 ×120 mm and 1400 mm in height. Heat transfer surface was an electrical heater made of brass tube with outer diameter of 19 mm and 110 mm length. In each experiment the temperatures of the front and rear side of the heating surface, inclination angle, air velocity, inlet air temperature, and heater power were measured. It was concluded that heat transfer coefficient depends on flow conditions and angle of inclination. The maximum Nusselt number (Nu) was observed to occur about 45° inclination relative to the horizon, for the range of Reynolds numbers used in experiments. The values of heat transfercoefficients in the vertical position were very nearly the same as they were in the horizontal position. Based on the experimental results, a correlation was proposed for estimation of Nu at the desired flow velocity and inclination angle, relative to Nu at zero inclination.  相似文献   

11.
The rapid heating of a wall bounding a semi-infinite region of gas generates a slightly supersonic compressive wave and thereby increases the rate of heat transfer to and through the gas. Generalized correlating expressions are presented for the wave velocity and for the amplitude in pressure, temperature, and gas velocity as a function of distance and time for any specified exponential rate and extent of increase of the temperature of the wall. These expressions are based on idealized analytical solutions modified by virtue of finite-difference solutions and experimental data. The combination of all three of these elements proved to be essential in order to understand and correlate the behavior. Although a compressive wave is generated for any rate and extent of heating of the wall, significant effects are observed only for very rapid heating and very large temperature differences. A critical time constant for exponential heating is identified such that the strength of the wave is equivalent to that for an instantaneous step in wall temperature.  相似文献   

12.
Tongsheng Sun 《Drying Technology》2014,32(13):1568-1574
Asphalt mixtures are simplified for porous media to study the heat and moisture transportation law based on the multiphysics transfer process of microwave heating. Electromagnetic diffusion and heat transfer models of asphalt mixtures are built. The heat and mass transfer model of moisture is also studied. The models prove capable of predicting the temperature field of recycled asphalt mixtures based on a microwave heating experiment. The pressure gradient increases with the increase in the heating temperature. The center heating region temperature is higher than that of the surrounding region as observed through temperature field simulation. The results can simulate the technical process of hot in-place recycling of asphalt mixtures and provide the theoretical basis for the structural design of heaters.  相似文献   

13.
In this paper some experimental results showing the influence of inclination of a cylindrical heating surface immersed in an air duct on heat transfer coefficient are presented. The experiments were performed in a laboratory-scaled apparatus of square cross section with dimensions 120 ‐ 120 mm and 1400 mm in height. Heat transfer surface was an electrical heater made of brass tube with outer diameter of 19 mm and 110 mm length. In each experiment the temperatures of the front and rear side of the heating surface, inclination angle, air velocity, inlet air temperature, and heater power were measured. It was concluded that heat transfer coefficient depends on flow conditions and angle of inclination. The maximum Nusselt number (Nu) was observed to occur about 45° inclination relative to the horizon, for the range of Reynolds numbers used in experiments. The values of heat transfercoefficients in the vertical position were very nearly the same as they were in the horizontal position. Based on the experimental results, a correlation was proposed for estimation of Nu at the desired flow velocity and inclination angle, relative to Nu at zero inclination.  相似文献   

14.
SIMULATION OF FLUIDIZED-BED DRYING OF CARROT WITH MICROWAVE HEATING   总被引:1,自引:0,他引:1  
A mathematical model of coupled heat and mass transfer was applied to batch fluidized-bed drying with microwave heating of a heat sensitive material—carrot. Four kinds of microwave heating with intermittent variation were examined. The numerical results show that different microwave heating patterns can affect the fluidized bed drying significantly. Changing the microwave input pattern from uniform to intermittent mode can prevent material from overheating under the same power density. Supplying more microwave energy at the beginning of drying can increase the utilization of microwave energy while keeping temperature low within the particle. For a particle diameter of 4 mm, fluidization velocity of 2 m/s, inlet airflow temperature of 70°C and the bed area factor of 80, the drying time are 750 and 1000 s, respectively, for the two good operating conditions with on/off periods of 125/375 s and 375/375 s. The cumulative microwave energy absorbed by particles at the end of drying is 1415 and 2300 kJ/kg (dry basis), respectively.  相似文献   

15.
利用仿真软件建立微波加热-激光加热-热辐射-流动传热-固体力学多物理场模型,研究了激光加热直径1mm碳纤维丝束的温度场分布与热应力大小,以及不同激光功率对于温度场与热应力的影响。同时,首次提出激光加热与微波加热结合的方式调节温度场分布与热应力大小的方法,仿真结果显示激光加热与微波加热结合的方式可以改善碳纤维丝束温度场的分布,有效降低丝束加热过程中的热应力。  相似文献   

16.
A continuously operated microwave heated millireactor setup has been developed for performing reactions of highly microwave absorbing media in a controlled and energy efficient manner. The setup consists of a tubular reactor integrated with a heat exchanger. A microwave transparent liquid was used as coolant to extract the excess heat from the reaction mixture, thus controlling the temperature of the reaction mixture by avoiding overshoots and subsequent boiling. A reactor‐heat exchanger shell and tube unit with a diameter of the inner tube of 3·10?3 m and a shell of 7·10?3 m inner diameter has been manufactured in quartz. The unit size was defined based on simulation with a heat‐transfer model for the microwave cavity part. Microwave heating was incorporated as a volumetric heating source term using the temperature‐dependent dielectric properties of the liquid. Model predictions were validated with measurements for a range of 0.167·10?6 to 1.67·10?6 m3/s flow rates of coolant. The outlet temperature of both the reaction mixture and the coolant, were predicted accurately (tolerance of 3 K), and the process window was determined. The model for the reactor part provided the required length of the reactor for a hetero‐geneously catalyzed esterification reaction. The predicted conversions, based on the obtained temperature profile in the reactor packed with the catalyst bed, known residence times and kinetics of the esterification reaction, were found to be in good agreement with the experimental results. Efficient utilization of microwave energy with heat recovery up to 20% of the total absorbed microwave power and heating efficiencies up to 96% were achieved. It has been demonstrated that the microwave heating combined with millireactor flow processing provides controlled and energy efficient operation thus making it a viable option for a fine chemical production scale of 1 kg/day (24 h period). © 2011 American Institute of Chemical Engineers AIChE J, 58: 3144–3155, 2012  相似文献   

17.
Drying kinetics of convective, vacuum, and microwave drying of a pharmaceutical product, chlorpropamide, has been investigated on a laboratory scale, in the temperature interval from 40°C to 60°C, and the range of microwave heating power from 154 W/kgdm to 385 W/kgdm.

The experimental data obtained were approximated with the “thin-layer” equation and a two parameter exponential model. In order to compare convective, vacuum, and microwave drying, effective diffusion coefficients and specific heat consumption were calculated for each drying method.

Higher rates and shorter drying times were achieved at a higher temperature and microwave heating power. The highest drying rates and the lowest specific heat consumption were achieved with microwave drying. This leads to the conclusion that microwave heating is the most appropriate method for drying of chlorpropamide. The quality of product was not changed for all applied methods.  相似文献   

18.
为研究微波功率、活性炭粒径、载气流速对活性炭升温规律的影响,利用微波加热综合试验平台进行活性炭微波加热升温试验,研究了不同因素下活性炭的升温特性。结果表明:相同前提下,随着微波功率的增大,2种活性炭(木质活性炭、煤质活性炭)的升温速率不断加快,最高温度随之提高,微波功率从240~400 W时,木质活性炭在10~16 min平均温度增幅达93℃,明显大于煤质活性炭;增加粒径导致木质活性炭达到的最终温度有所降低,且升温速率减小;提高载气流速可减缓木质活性炭的升温速率并降低其最高温度。获取最高活性炭温度的最佳试验工况为微波功率P为400 W、活性炭粒径d≤1 mm、载气流速Q为60 L/h。  相似文献   

19.
通过对全纤维棉式、隔板式、空气隔层式等三种形式的陶瓷纤维炉衬在加热过程中温度场的测量,并据此对上述三种形式炉衬的热损失计算表明:在纤维棉内层加一薄隔热板可使该处在加热过程中降温达150℃,热损失减少20%。若采用空气隔层式炉衬,炉衬厚度从全纤维棉炉衬的150mm厚降至110mm,且热损失减少30%。  相似文献   

20.
《Ceramics International》2020,46(6):7362-7373
Refractory lining is an indispensable part of high temperature microwave heating equipment, and its wave transmission performance exerts an important impact on the mode and efficiency of microwave heating, while the complex dielectric constant (dielectric constant and dielectric loss) of the material is the decisive factor in determining the wave transmission performance of the material. In this work, we measured the complex dielectric constant of polycrystalline mullite fiber board (PMF) in the temperature range of 25–1000 °C, and the effect of temperature on dielectric constant and dielectric loss was analyzed; The wave-transmission properties of the material were calculated according to the theory of electromagnetic wave transmission line, and the effects of temperature, material thickness, polarization modes of electromagnetic wave and incident angle on the wave transmission performance were analyzed. The results reveal that the dielectric constant of PMF does not change much with the increase of temperature, which is about 1.6; The dielectric loss does not change much within 200 °C, but when the temperature is higher than 200 °C, the change presents approximately exponential increase with the rise of temperature. The wave transmission performance fluctuates with the increase of the thickness, and there are maximum value and minimum value, and the overall wave transmission performance decreases with the increase of the material thickness. In a transverse electric (TE) field, the overall wave transmission performance decreases with the increase of the incident angle, and better wave transmission performance can be obtained by priority selection of vertical incidence of electromagnetic wave. In a transverse magnetic (TM) field, with the increase in the incident angle, the wave transmission performance firstly climbs up then declines, and there is an optimal incident angle where total transmission can occur. Finally, this work selected the thickness corresponding to different temperature as the preferred thickness. This work is of important theoretical significance for understanding the mechanism of the dynamic change of the wave transmission performance of the thermal insulation materials in microwave heating, and provides important practical guidance for the design and optimization of microwave heating equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号