首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ergonomics》2012,55(7):859-873
Psychophysical methodology has been used to develop guidelines for lifting and more recently similar methods have been applied to repetitive upper limb movements. While a range of cycle times are usually used, there is often no control for duty cycle. The purpose of this paper is to present psychophysically determined acceptable torques for a common upper limb task, with both cycle time and duty cycle conditions set by the researcher. Eight female participants, sitting at adjustable workstations, performed a simulated in-line screw running task. A computer-controlled torque motor applied a torque every 3, 6, 12 or 20?s with a duty cycle of 25, 50 or 83%. The participants worked with one set of conditions each day and self-selected the highest torque that they felt was acceptable without developing undue pain and discomfort. Duty cycle was found to significantly affect the amount of torque selected. With duty cycle controlled, cycle time was no longer found to have any significant effect on selected torque. Acceptable torques for 25, 50 and 83% duty cycles were 1.09, 0.9 and 0.73 Nm. Discomfort and stiffness were concentrated on the back of the hand and on the thumb web. These findings suggest that increased perception of discomfort with increased frequency (decreased cycle time) may be related to decreased rest/recovery time for muscles.  相似文献   

2.
Ergonomics has positive effects on both physical health and productivity, but estimating productivity benefits is difficult at the task design/redesign stage. Rest‐allowance prediction models are not suitable for repetitive, short‐cycle dynamic tasks, and methods–time measurement (MTM) techniques are limited in their suitability for considering ergonomics risk factors such as posture and force. The purpose of this study was to investigate the relationship between force and exertion duration on self‐selected duty cycle time and discomfort. Twenty‐one participants completed repetitive, upper‐limb exertion treatments, each of a 10‐minute duration. Five levels of force (10, 20, 40, 65, and 80% maximum voluntary contraction [MVC]) and exertion period (1, 2, 4, 6.5, and 8 seconds) were investigated. The psychophysical adjustment method was used whereby participants self‐selected a work pace for the second half of each treatment. Duty cycle, derived from the self‐paced cycle time, was the measure of productivity effects in the experiment. Analysis of variance revealed a significant effect on duty cycle time for force, exertion period, and their interaction (each p < 0.0001). Friedman's test indicated a significant effect of force (p < 0.0001) and exertion period (p < 0.0001) on discomfort. Spearman's correlation analysis showed a strong correlation between discomfort and duty cycle time (p < 0.05). Multiple regression analysis was used to develop a predictive model for duty cycle time based on force and exertion period, and this was a good fit to the data (R2 = 0.98, p < 0.05). Profiles were generated presenting zones of acceptable self‐selected duty cycle times based on force and exertion duration. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
Aoife Finneran 《Ergonomics》2014,57(4):589-601
Performance and health issues are common in industry. On-the-job productivity gains related to good design, which could help justify ergonomics intervention, are often not considered. More quantitative data are needed to model the discomfort/productivity relationship for upper limb activity in simulated repetitive assembly type work. Eighteen participants completed an experiment, simulating a repetitive upper limb task with force, posture and grip type recorded as independent variables. Duty cycle time and discomfort were recorded as dependent variables. Participants performed 18 experiment combinations (block designed around force); each treatment lasted 35 min, including breaks. Analysis indicated a significant two-way interaction between posture and grip type. Results from this experiment were used to model the effect of these variables on operator discomfort and performance.  相似文献   

4.
OBJECTIVE: To determine the effects of intermittent task parameters on muscle fatigue and endurance time during static shoulder abductions, with a long-term goal of establishing relationships between intermittent task parameters and short-term performance. BACKGROUND: Effects of intermittent work on endurance and fatigue development have been reported, and certain combinations of contraction levels and duty cycles have been proposed as design guidelines. These findings, however, were not derived from systematic manipulations of the task parameters. METHOD: Prolonged (1-hr maximum) intermittent shoulder abductions were performed at different combinations of contraction level (12% or 28% of muscle strength), duty cycle (.25 or .75), and cycle time (34 or 166 s). Fatigue was measured based on reductions in muscle strength and indirectly by changes in ratings of discomfort, electromyographic (EMG) amplitude, and EMG spectral distribution. RESULTS: Contraction level and duty cycle significantly affected endurance time and muscle fatigue, and interactive effects between these parameters were observed for some of the measures. Significant effects of cycle time were found only for EMG spectral measures. CONCLUSION: Endurance time and local fatigue were dependent on the comprehensive effects of the different task parameters. APPLICATION: Design changes to reduce the occurrence of localized fatigue during intermittent work need to take into account all the task parameters simultaneously.  相似文献   

5.
The lower limb cycle ergometer driven by a motor is a typical rehabilitation-assistive device for hemiparetic patients with abnormal muscle tone in their lower limbs. Since unusual muscle tone may cause excessive spasticity during rehabilitation, it is important to monitor reactive torques produced primarily by the abnormal muscle tone. Thus, this study investigated a state observer design applied to a belt-driven ergometer, where the motor current and position information were used to estimate reliable reactive torque. A dual feedback control loop was proposed to improve the resonance caused by the belt-driven structure and stabilize the cycling speed in the cycle rehabilitated device; meanwhile, the impedance model constructed by the feedback control loop is presented to generate the compliance characteristic for stably and gently controlling the speed response affected by reactive torque. Simulation and experiments of the belt-driven ergometer were conducted with results validating the effectiveness of the proposed control scheme in terms of stable cycle speed and observer performance.  相似文献   

6.
《Ergonomics》2012,55(1):146-159
The aim of this work was to investigate physiological responses to torque reaction forces produced by hand-held power tools used to tighten threaded fasteners. Such tools are used repetitively by workers in many industries and are often associated with upper limb musculoskeletal complaints. The tools considered for stimulation in this study had straight handles and required from 100 to 400 ms to tighten fasteners to a peak torque of 1.0 to 2.5 Nm and from 50 to 150 ms for the torque to decay to zero. A tool stimulator was constructed to apply a programmed torque profile to a handle similar to that of a straight in-line power screwdriver. Wrist flexor and extensor surface EMGs and handle position were recorded as subjects held handles subjected to controlled torque loads that tended to flex the wrist. It was found that: (1) very high EMG values occurred even though torques were of short duration (50 to 600 ms) and the peak torques were low (7–28% of maximum strength); (2) high EMGs in anticipation of torque are directly related to torque build-up rate and peak torque; (3) high peak flexor and extensor EMGs during and following torque onset are related to torque build-up rate and peak torque; (4) minimum time of peak EMGs of 72–87 ms following the onset of torques with 50 ms build-up suggests the contribution of an extensor muscle stretch reflex component; delayed peak for longer build-ups suggests a central control of muscle force in response to torque; (5) angular excursions of handles increase with decreasing torque build-up time and increasing torque magnitude causes increasing eccentric work; (6) the results show that the slow torque build-up times (450 ms) correspond to minimum peak EMGs; and (7) accumulated EMGs increase with increasing torque and torque build-up times. Further studies are needed to evaluate fatigue and musculoskeletal injuries associated with prolonged periods of tool use.  相似文献   

7.
Powered hand tools have the potential to produce reaction forces that may be associated with upper extremity musculoskeletal disorders. In this study, subjective ratings of discomfort and acceptability of reaction forces were collected in an attempt to identify their associations with factors such as work location, and response covariates such as grip force and tool handle displacement. Three work configurations using pistol grip and right angle pneumatic nutrunners on horizontal and vertical surfaces were set up in the laboratory. Twenty healthy right-handed male participants operated four tools at nine locations and the corresponding subjective responses were collected. The results indicate that normalized grip force during the torque buildup period was a significant factor for both subjective ratings. For the unacceptable torque reactions across the three tool configurations, the ratio of hand moment impulse over tool torque impulse was significantly greater than for the acceptable reactions. For pistol grip tools used on the vertical surface, as the working height increased 30 cm, the odds of an unacceptable rating over an acceptable rating increased 1.6 times. Prediction models for subjective ratings of discomfort and acceptability provide insight regarding either workstation design or exposure control. These models can further be used to establish exposure limits based on handle displacement and grip force.  相似文献   

8.
Ergonomic interventions such as increased scheduled breaks or job rotation have been proposed to reduce upper limb muscle fatigue in repetitive low-load work. This review was performed to summarize and analyze the studies investigating the effect of job rotation and work-rest schemes, as well as, work pace, cycle time and duty cycle, on upper limb muscle fatigue. The effects of these work organization factors on subjective fatigue or discomfort were also analyzed. This review was based on relevant articles published in PubMed, Scopus and Web of Science. The studies included in this review were performed in humans and assessed muscle fatigue in upper limbs. 14 articles were included in the systematic review. Few studies were performed in a real work environment and the most common methods used to assess muscle fatigue were surface electromyography (EMG). No consistent results were found related to the effects of job rotation on muscle activity and subjective measurements of fatigue. Rest breaks had some positive effects, particularly in perceived discomfort. The increase in work pace reveals a higher muscular load in specific muscles. The duration of experiments and characteristics of participants appear to be the factors that most have influenced the results. Future research should be focused on the improvement of the experimental protocols and instrumentation, in order to the outcomes represent adequately the actual working conditions.Relevance to industryIntroducing more physical workload variation in low-load repetitive work is considered an effective ergonomic intervention against muscle fatigue and musculoskeletal disorders in industry. Results will be useful to identify the need of future research, which will eventually lead to the adoption of best industrial work practices according to the workers capabilities.  相似文献   

9.
This study represents a continuation of a series of psychophysical studies on repetitive motions of the wrist and hand conducted at the Liberty Mutual Research Center for Safety and Health. The purpose of the study was to quantify maximum acceptable forces of six motions performed on separate days but within the context of the same experiment. The six motions were wrist flexion with a power grip, wrist extension with a power grip, wrist flexion with a pinch grip, wrist extension with a pinch grip, ulnar deviation with a power grip, and a handgrip task (with a power grip). A psychophysical methodology was used in which the subject adjusted the resistance on the handle and the experimenter manipulated or controlled all other variables. Thirty-one subjects performed the six tasks at repetition rates of 15, 20 and 25 motions/min. Subjects performed the tasks for 7 h per day, 5 days per week, for 4 weeks. The subjects were instructed to work as if they were on an incentive basis, getting paid for the amount of work performed. Symptoms were recorded by the subjects during the last 5 min of each hour. The results revealed that maximum acceptable torques ranged from 11 to 19% of maximum isometric torque depending on frequency and motion. Maximum acceptable torques for the tasks that could be compared with previous studies showed the same patterns of response. However, the selected forces were substantially lower using the mixed protocol. A table of maximum acceptable torques and forces is presented for application in the field.  相似文献   

10.
《Ergonomics》2012,55(10):922-936
This study represents a continuation of a series of psychophysical studies on repetitive motions of the wrist and hand conducted at the Liberty Mutual Research Center for Safety and Health. The purpose of the study was to quantify maximum acceptable forces of six motions performed on separate days but within the context of the same experiment. The six motions were wrist flexion with a power grip, wrist extension with a power grip, wrist flexion with a pinch grip, wrist extension with a pinch grip, ulnar deviation with a power grip, and a handgrip task (with a power grip). A psychophysical methodology was used in which the subject adjusted the resistance on the handle and the experimenter manipulated or controlled all other variables. Thirty-one subjects performed the six tasks at repetition rates of 15, 20 and 25 motions/min. Subjects performed the tasks for 7 h per day, 5 days per week, for 4 weeks. The subjects were instructed to work as if they were on an incentive basis, getting paid for the amount of work performed. Symptoms were recorded by the subjects during the last 5 min of each hour. The results revealed that maximum acceptable torques ranged from 11 to 19% of maximum isometric torque depending on frequency and motion. Maximum acceptable torques for the tasks that could be compared with previous studies showed the same patterns of response. However, the selected forces were substantially lower using the mixed protocol. A table of maximum acceptable torques and forces is presented for application in the field.  相似文献   

11.
This paper examines the effects of two glove conditions and selected handle and task characteristics on tightening (clockwise) torques on cylindrical handles in simulated oil rig tasks. Ten males exerted MVC torques with the right hand on nine handles with different length-diameter combinations (3.8, 7.6, and 12.7 cm in length with 3.8, 6.7, and 8.4 cm in diameter) with dry and grease-smeared gloves in two orientations. The results showed a 50% reduction of torque when using grease-smeared glove compared to dry glove; a 15% increase with the long handle compared to the short one; a 25% increase with the medium diameter handle compared to the small one; and a 12% increase with the horizontally oriented handle compared with the vertical one. There were important interaction effects also.  相似文献   

12.
《Ergonomics》2012,55(10):1405-1414
Abstract

A need for overhead work remains in several industries and such work is an important risk factor for shoulder musculoskeletal problems. In this study, we evaluated the effects of duty cycle and tool mass on endurance times during overhead work. A psychophysical approach was used, via a new methodology that was implemented to more efficiently estimate endurance times (rather than through direct measurements). Participants performed a simulated overhead task in specified combinations of tool mass and duty cycle. Both duty cycle and tool mass have substantial effects on the development of fatigue and estimated endurance times, though the former was more substantial and an interactive effect was evident. Gender differences were not substantial, except when using the largest tool mass. We recommend that, for two-hour periods of overhead work, tool masses greater than 1.25 kg should be avoided, as should duty cycles greater than 50%.

Practitioner Summary: The current results may facilitate enhanced design and evaluation of overhead work tasks. In addition, the new estimation approach that was employed may enhance the efficiency of future studies using a psychophysical approach (ie using extrapolation of patterns of reported discomfort to predict longer term outcomes).  相似文献   

13.
This experiment investigated maximum forearm pronation and supination torques and forearm discomfort, for intermittent torque exertions in supine and prone forearm angles for the right arm. Twenty-two subjects participated in the study that comprised two parts, the first of which involved measurement of maximum forearm torque in both twisting directions at five forearm angles including neutral. This was followed by endurance tests at 50% maximum voluntary contraction (MVC) in both directions. The second part of the study involved subjects performing 5-min duration of intermittent isometric torque exercises at 20% MVC in both directions at 11 forearm angles. Regression equations were developed that accurately predict torques as a function of forearm angle expressed as a percentage of maximum motion. Analysis of the discomfort data for the intermittent isometric torque exertions indicated that both forearm angle and twisting direction significantly affected forearm discomfort (p < 0.001). A significant two-way interaction (p < 0.01) was identified between forearm angle and direction for supine forearm angles only. The results provide important strength and discomfort models for the design of tasks involving static or repetitive forearm twisting. Such tasks have a strong association with forearm injuries including lateral and medial epicondylitis. These results provide needed data on the risk factors associated with these injuries so they can be prevented.  相似文献   

14.
《Ergonomics》2012,55(6):703-721
This experiment investigated maximum forearm pronation and supination torques and forearm discomfort, for intermittent torque exertions in supine and prone forearm angles for the right arm. Twenty-two subjects participated in the study that comprised two parts, the first of which involved measurement of maximum forearm torque in both twisting directions at five forearm angles including neutral. This was followed by endurance tests at 50% maximum voluntary contraction (MVC) in both directions. The second part of the study involved subjects performing 5-min duration of intermittent isometric torque exercises at 20% MVC in both directions at 11 forearm angles. Regression equations were developed that accurately predict torques as a function of forearm angle expressed as a percentage of maximum motion. Analysis of the discomfort data for the intermittent isometric torque exertions indicated that both forearm angle and twisting direction significantly affected forearm discomfort (p?<?0.001). A significant two-way interaction (p?<?0.01) was identified between forearm angle and direction for supine forearm angles only. The results provide important strength and discomfort models for the design of tasks involving static or repetitive forearm twisting. Such tasks have a strong association with forearm injuries including lateral and medial epicondylitis. These results provide needed data on the risk factors associated with these injuries so they can be prevented.  相似文献   

15.
This study evaluated the use of simple inclines as a portable peripheral for improving head and neck postures during notebook computer use on tables in portable environments such as hotel rooms, cafés, and airport lounges. A 3D motion analysis system measured head, neck and right upper extremity postures of 15 participants as they completed a 10 min computer task in six different configurations, all on a fixed height desk: no-incline, 12° incline, 25° incline, no-incline with external mouse, 25° incline with an external mouse, and a commercially available riser with external mouse and keyboard. After completion of the task, subjects rated the configuration for comfort and ease of use and indicated perceived discomfort in several body segments. Compared to the no-incline configuration, use of the 12° incline reduced forward head tilt and neck flexion while increasing wrist extension. The 25° incline further reduced head tilt and neck flexion while further increasing wrist extension. The 25° incline received the lowest comfort and ease of use ratings and the highest perceived discomfort score. For portable, temporary computing environments where internal input devices are used, users may find improved head and neck postures with acceptable wrist extension postures with the utilization of a 12° incline.  相似文献   

16.
The nonlinear coupled dynamic behaviour of a mining dragline is optimized to increase productivity and reduce metal fatigue on the boom. Draglines are very large crane‐like robots used in open cut mining, primarily for the removal of overburden that covers a coal seam. The dynamic behaviour of the machine is a key determinant of productivity and fatigue‐based maintenance. The Newton–Lagrange method is applied to a field‐validated model to optimize slew torque under nonlinear constraints. Two scenarios are analysed: the minimization of cycle time with a time penalty for duty (estimated fatigue damage) and fixed rope lengths, and the minimization of duty under a fixed cycle time and measured rope lengths. The results from the second scenario compare favourably with earlier efforts to optimize slew torque using intuitive manual techniques. In particular, the numerical optimization procedure achieved a 50–60% reduction in duty, improving upon manual optimization results by 10–30%. Techniques are presented for solving convergence issues related to the high degree of nonlinearity of the model and constraints, actuator limitations and noise introduced by measured data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This study seeks to elucidate the effects of the cycle time of a pick-and-place task on muscle activity, grip force, posture, and perception-based measures (discomfort and difficulty). Six healthy adults (3 males, 3 females) participated. A 4 x 2 repeated measures design was used with cycle time (1, 2, 5, and 10s) and grip (power and chuck) as independent variables. The task consists of repetitively picking a 0.7 kg part and placing it into a bin. A reduction in cycle time (CT) resulted in both a decrease of task time and physical rest time (p<0.001). The physiological muscle rest was much lower than the physical rest time (p<0.05). An increase in static muscle loading (p<0.01), grip force (p<0.001), and discomfort (p<0.001) were also observed. These results suggest that a pace threshold (between 2 and 5s for this task) is reached at a higher CT than that defined by the ability to perform the task.  相似文献   

18.
《Ergonomics》2012,55(7):1488-1507
Abstract

The purpose of this experiment was to investigate the feasibility of using psychophysical methods to determine maximum acceptable forces for various types and frequencies of repetitive wrist motion. Four adjustable work stations were built to simulate repetitive wrist flexion with a power grip, wrist flexion with a pinch grip, and wrist extension with a power grip. The study consisted of two separate experiments. Subjects worked for two days per week during the first experiment, and five days per week during the second experiment. Fifteen women completed the first experiment, working seven hours each day, two days per week, for 20 days. Repetition rates of 2, 5, 10, 15 and 20 motions per minute were used with each flexion and extension task. Maximum acceptable torques were determined for the various motions, grips, and repetition rates without dramatic changes in wrist strength, tactile sensitivity, or number of symptoms. Fourteen different women completed the second experiment, performing a wrist flexion motion (power grip) fifteen times per minute, seven hours per day, five days per week, for 23 days. There were no significant differences in maximum acceptable torque from day to day. However, the average maximum acceptable torque for a five days per week exposure was 36-3% lower than for the same task performed two days per week. Assuming that maximum acceptable torques decrease 36-3% for other repetition rates and motions, tables of maximum acceptable force were developed for female wrist flexion (power grip), female wrist flexion (pinch grip), and female wrist extension (power grip).  相似文献   

19.
Dickerson CR  Martin BJ  Chaffin DB 《Ergonomics》2006,49(11):1036-1051
The objective of this study was to define the quantitative relationship between external dynamic shoulder torques and calibrated perceived muscular effort levels for load delivery tasks, for application in job analyses. Subjects performed a series of loaded reaches and, following each exertion, rated their perceived shoulder muscular effort. Motion and task physical requirements data were processed with a biomechanical upper extremity model to calculate external dynamic shoulder torques. Calculated torque values were then statistically compared to reported calibrated perceived muscular effort scores. Individual subject torque profiles were significantly positively correlated with perceived effort scores (r2 = 0.45-0.77), with good population agreement (r2 = 0.50). The accuracy of the general regression model improved (r2 = 0.72) with inclusion of factors specific to task geometry and individual subjects. This suggests two major conclusions: 1) that the perception of muscular shoulder effort integrates several factors and this interplay should be considered when evaluating tasks for their impact on the shoulder region; 2) the torque/perception relationship may be usefully leveraged in job design and analysis.  相似文献   

20.
This paper focuses on the effects of the free pedal position adjustment on clutching movements of the left lower limb as well as on the perceived discomfort. Six automotive clutch pedal configurations were tested by 20 subjects (5 young females, 5 young males, 5 older females, 5 older males) using a multi-adjustable experimental mock-up. Results showed that the pedal position was adjusted to ensure a good starting pedal position allowing a less flexed ankle and avoiding unnecessary leg displacement from the foot rest to the position at start depression. Pedal position adjustment seemed not motivated by reducing joint torque though discomfort ratings were found significantly correlated with knee and ankle torques at the end of depression. The present work also illustrates that the less-constrained motion concept is helpful for a better understanding of people preference and useful for identifying motion-related biomechanical parameters to be considered for defining assessment criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号