首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fouling and subsequent chemical cleaning of nanofiltration (NF) membranes used in water quality control applications are often inevitable. To unravel the mechanisms of organic fouling and chemical cleaning, it is critical to understand the foulant-membrane, foulant-foulant, and foulant-cleaning agent interactions at the molecular level. In this study, the adhesion forces between the foulant and the membrane surface and between the bulk foulant and the fouling layer were determined by atomic force microscopy (AFM). A carboxylate modified AFM colloid probe was used as a surrogate for humic acid, the major organic foulant in natural waters. The interfacial force data were combined with the NF membrane water flux measurements to elucidate the mechanisms of organic fouling and chemical cleaning. A remarkable correlation was obtained between the measured adhesion forces and the fouling and cleaning behavior of the membrane under various solution chemistries. The AFM measurements further confirmed that divalent calcium ions greatly enhance natural organic matter fouling by complexation and subsequent formation of intermolecular bridges among organic foulant molecules. Efficient chemical cleaning was achieved only when the calcium ion bridging was eliminated as a result of the interaction between the chemical cleaning agent and the fouling layer. The cleaning efficiency was highly dependent on solution pH and the concentration of the chemical cleaning agent.  相似文献   

2.
The performance of an electrochemical multiwalled carbon nanotube (EC-MWNT) filter toward virus removal and inactivation in the presence of natural organic matter was systematically evaluated over a wide range of solution chemistries. Viral removal and inactivation were markedly enhanced by applying DC voltage in the presence of alginate and Suwannee River natural organic matter (SRNOM). Application of 2 or 3 V resulted in complete (5.8 to 7.4 log) removal and significant inactivation of MS2 viral particles in the presence of 5 mg L(-1) of SRNOM or 1 mg L(-1) of alginate. The EC-MWNT filter consistently maintained high performance over a wide range of solution pH and ionic strengths. The underlying mechanisms of enhanced viral removal and inactivation were further elucidated through EC-MWNT filtration experiments using carboxyl latex nanoparticles. We conclude that enhanced virus removal is attributed to the increased viral particle transport due to the applied external electric field and the attractive electrostatic interactions between the viral particles and the anodic MWNTs. The adsorbed viral particles on the MWNT surface are then inactivated through direct surface oxidation. Minimal fouling of the EC-MWNT filter was observed, even after 4-h filter runs with solutions containing 10 mg L(-1) of natural organic matter and 1 mM CaCl(2). Our results suggest that the EC-MWNT filter has a potential for use as a high performance point-of-use device for the removal of viruses from natural and contaminated waters with minimal power requirements.  相似文献   

3.
Adsorption of organic foulants on nanofiltration (NF) and reverse osmosis (RO) membrane surfaces strongly affects subsequent fouling behavior by modifying the membrane surface. In this study, impact on organic foulant adsorption of specific chemistries including those in commercial thin-film composite membranes was investigated using self-assembled monolayers with seven different ending chemical functionalities (-CH(3), -O-phenyl, -NH(2), ethylene-glycol, -COOH, -CONH(2), and -OH). Adsorption and cleaning of protein (bovine serum albumin) and polysaccharide (sodium alginate) model foulants in two solution conditions were measured using quartz crystal microbalance with dissipation monitoring, and were found to strongly depend on surface functionality. Alginate adsorption correlated with surface hydrophobicity as measured by water contact angle in air; however, adsorption of BSA on hydrophilic -COOH, -NH(2), and -CONH(2) surfaces was high and dominated by hydrogen bond formation and electrostatic attraction. Adsorption of both BSA and alginate was the fastest on -COOH, and adsorption on -NH(2) and -CONH(2) was difficult to remove by surfactant cleaning. BSA adsorption kinetics was shown to be markedly faster than that of alginate, suggesting its importance in the formation of the conditioning layer. Surface modification to render -OH or ethylene-glycol functionalities are expected to reduce membrane fouling.  相似文献   

4.
Nanofiltration membrane fouling by oppositely charged polysaccharide (alginate) and protein (lysozyme) was systematically studied. It was found that membrane flux decline in the presence of both lysozyme and alginate was much more severe compared to that when there was only lysozyme or alginate in the feed solution. The flux performance for the mixed foulants was only weakly affected by solution pH and calcium concentration. These effects were likely due to the strong electrostatic attraction between the two oppositely charged foulants. Higher initial flux caused increased foulant deposition, more compact foulant layer, and more severe flux decline. The deposited foulant cake layer had a strong tendency to maintain a constant foulant composition that was independent of the membrane initial flux and only weakly dependent on the relative foulant concentration in feed solution. In contrast, solution chemistry (pH and [Ca2?]) had marked effect on the foulant layer composition, likely due to the resulting changes in the foulant-foulant interaction. The mixed alginate-lysozyme fouling could result in an initial enhancement in salt rejection. However, such initial enhancement was not observed when there was 1 mM calcium present in the feedwater, which may be attributed to the charge neutralization of the foulant layer.  相似文献   

5.
Interactions between rotavirus and Suwannee River natural organic matter (NOM) were studied by time-resolved dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. In NOM-containing NaCl solutions of up to 600 mM, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation in NaCl solutions. Aggregation rates of rotavirus in solutions containing 20 mg C/L increased with divalent cation concentration until reaching a critical coagulation concentration of 30 mM CaCl(2) or 70 mM MgCl(2). Deposition kinetics of rotavirus on NOM-coated silica surface was studied using quartz crystal microbalance. Experimental attachment efficiencies for rotavirus adsorption to NOM-coated surface in MgCl(2) solution were lower than in CaCl(2) solution at a given divalent cation concentration. Stronger adhesion force was measured for virus-virus and virus-NOM interactions in CaCl(2) solution compared to those in MgCl(2) or NaCl solutions at the same ionic strength. This study suggested that divalent cation complexation with carboxylate groups in NOM and on virus surface was an important mechanism in the deposition and aggregation kinetics of rotavirus.  相似文献   

6.
Fouling of microfiltration and ultrafiltration membranes by natural waters   总被引:3,自引:0,他引:3  
Membrane filtration (microfiltration and ultrafiltration) has become an accepted process for drinking water treatment, but membrane fouling remains a significant problem. The objective of this study was to systematically investigate the mechanisms and components in natural waters that contribute to fouling. Natural waters from five sources were filtered in a benchtop filtration system. A sequential filtration process was used in most experiments. The first filtration steps removed specific components from the water, and the latter filtration steps investigated membrane fouling by the remaining components. Particulate matter (larger than 0.45 microm) was relatively unimportant in fouling as compared to dissolved matter. Very small colloids, ranging from about 3-20 nm in diameter, appeared to be important membrane foulants based on this experimental protocol. The colloidal foulants included both inorganic and organic matter, but the greatest fraction of material was organic. When the colloidal fraction of material was removed, the remaining dissolved organic matter (DOM), which was smaller than about 3 nm and included about 85-90% of the total DOM, caused very little fouling. Thus, although other studies have identified DOM as a major foulant during filtration of natural waters, this work shows that a small fraction of DOM may be responsible for fouling. Adsorption was demonstrated to be an important mechanism for fouling by colloids.  相似文献   

7.
Fouling in membranes used for water treatment has been attributed to the presence of natural organic matter (NOM) in water. There have been reports recently on the contribution of hydrophilic fractions of NOM (e.g., carbohydrate-like substances) to fouling, but there is still little information about the physicochemical interactions between membranes and carbohydrate-like substances. In this study, the affinity of carbohydrate-like substances to two different microfiltration (MF) membranes was investigated by using atomic force microscopy (AFM) and functionally modified microspheres. Microspheres were attached to the tip of the cantilever in an AFM apparatus and the adhesion forces working between the microspheres and the membranes were determined. The microspheres used in this study were coated with either hydroxyl groups or carboxyl groups to be used as surrogates of carbohydrate-like substances or humic acid, respectively. Measurements of adhesion force were carried out at pH of 6.8 and the experimental results demonstrated that the adhesion force to membranes was strong in the case of hydroxyl groups but weak in the case of carboxyl groups. The strong adhesion between the hydroxyl group and the membrane surface is explained by the strong hydrogen bond generated. It was also found that the affinity of the hydroxyl group to a polyvinylidenefluoride (PVDF) membrane was much higher than that to a polyethylene (PE) membrane, possibly due to the high electronegative nature of the PVDF polymer. The time course of changes in the affinity of hydroxyl group to a membrane used in a practical condition was investigated by repeatedly carrying out AFM force measurements with PE membrane specimens sampled from a pilot plant operated at an existing water treatment plant. Microspheres exhibited strong affinity to the membrane at the initial stage of operation (within 5 days), but subsequently exponential reduction of the affinity was seen until the end of operation, as a result of fouling development. However, the magnitude of affinity of hydroxyl-modified microspheres was much higher than that of carboxyl-modified microspheres even after the significant reduction of affinity of hydroxyl-modified microspheres to the membranes was seen. The results obtained in this study partially explain why hydrophilic NOM dominated over humic substances in foulants of membranes used for water treatment in recent studies on fouling.  相似文献   

8.
Simulated solar light irradiation of mesotrione in natural waters   总被引:3,自引:0,他引:3  
Photolysis is expected to be a major degradation process for pollutants in surface waters. We report here the first photodegradation study on mesotrione, a new triketone herbicide for use in maize. In a first step, we investigated the direct photolysis of mesotrione at 365 nm from a kinetic and analytical point of view. Mesotrione sensitizes its own oxidation through singlet oxygen formation and sensitizes the oxidation of H-donors through electron or H-atom transfer. In a second step, irradiation experiments were performed under conditions prevalent in the aqueous environment. Mesotrione in submicromolar concentrations was exposed to simulated sunlight, in addition to Suwannee River natural organic matter and/or nitrates. Suwannee River natural organic matter sensitizes the oxidation of mesotrione through the intermediacy of singlet oxygen, and the rate of mesotrione transformation is significantly enhanced for Suwannee River natural organic matter concentrations equal to or above 10 mg/L. Nitrates played a negligible role in SRNOM solutions.  相似文献   

9.
Natural organic matter stabilizes carbon nanotubes in the aqueous phase   总被引:5,自引:0,他引:5  
This study investigates the aqueous stability of multi-walled carbon nanotubes (MWNTs) in the presence of natural organic matter (NOM). MWNTs were readily dispersed as an aqueous suspension in both model NOM (Suwannee River NOM (SR-NOM)) solutions and natural surface water (actual Suwannee River water with unaltered NOM background), which remained stable for over 1 month. Microscopic analyses suggested that the suspension consisted primarily of individually dispersed MWNTs. Concentrations of MWNTs suspended in the aqueous phase, quantified using thermal optical transmittance analysis (TOT), ranged from 0.6 to 6.9 mg/L as initial concentrations of MWNT and SR-NOM were varied from 50 to 500 mg/L and 10 to 100 mg/L, respectively. Suwannee River water showed a similar MWNT stabilizing capacity as compared to the model SR-NOM solutions. For the same initial MWNT concentrations, the concentrations of suspended MWNT in SR-NOM solutions and Suwannee River water were considerably higher than that in a solution of 1% sodium dodecyl sulfate, a commonly used surfactant to stabilize CNTs in the aqueous phase. These findings suggest that dispersal of carbon-based nanomaterials in the natural, aqueous environment might occur to an unexpected extent following a mechanism that has not been previously considered in environmental fate and transport studies.  相似文献   

10.
Atomic force microscopy (AFM) was used to characterize interactions between natural organic matter (NOM), and glass or bacteria. Poly(methacrylic acid) (PMA), soil humic Acid (SHA), and Suwannee River humic Acid (SRHA), were adsorbed to silica AFM probes. Adhesion forces (Fadh) for the interaction of organic-probes and glass slides correlated with organic molecular weight (MW), but not with radius of the organic aggregate (R), charge density (Q), or zeta potential (zeta). Two Pseudomonas aeruginosa strains with different lipopolysaccharides (LPS) were chosen: PAO1 (A+B+), whose LPS have common antigen (A-band) + O-antigen (B-band); and mutant AK1401 (A+B-). Fadh between bacteria and organics correlated with organic MW, R, and Q, but not zeta. PAO1 had lower Fadh with silica than NOM, which was attributed to negative charges from the B-band polymers causing electrostatic repulsion. AK1401 adhered stronger to silica than to the organics, perhaps because the absence of the B-band exposed underlying positively charged proteins. DLVO calculations could not explain the differences in the two bacteria or predict qualitative or quantitative trends in interaction forces in these systems. Molecular-level information from AFM studies can bring us closer to understanding the complex nature of bacterial-NOM interactions.  相似文献   

11.
Membrane fouling by natural organic matter (NOM) was investigated in microgranular adsorptive filtration (μGAF) systems, in which a thin layer of adsorbent is predeposited on low-pressure membranes. The adsorbents tested included heated aluminum oxide particles (HAOPs), ion exchange (IX) resin, and powdered activated carbon (PAC). Size exclusion chromatography (SEC) separated the NOM into four apparent MW fractions with significant UV???. HAOPs and the IX resin performed almost identically with respect to removal of these fractions, and differently from PAC. However, while HAOPs and PAC reduced fouling substantially, IX resin did not, indicating that fouling could not be attributed to the NOM fractions detected by SEC. Rather, the key foulants appear to comprise a very small fraction of the NOM with almost no UV??? absorbance. Alginate, a strongly fouling surrogate for natural polysaccharides, is adsorbed effectively by HAOPs, but not by IX resin or PAC, suggesting that polysaccharides sometimes play a key role in membrane fouling by NOM.  相似文献   

12.
The adsorption of natural organic matter (NOM) to the surfaces of natural colloids and engineered nanoparticles is known to strongly influence, and in some cases control, their surface properties and aggregation behavior. As a result, the understanding of nanoparticle fate, transport, and toxicity in natural systems must include a fundamental framework for predicting such behavior. Using a suite of gold nanoparticles (AuNPs) with different capping agents, the impact of surface functionality, presence of natural organic matter, and aqueous chemical composition (pH, ionic strength, and background electrolytes) on the surface charge and colloidal stability of each AuNP type was investigated. Capping agents used in this study were as follows: anionic (citrate and tannic acid), neutral (2,2,2-[mercaptoethoxy(ethoxy)]ethanol and polyvinylpyrrolidone), and cationic (mercaptopentyl(trimethylammonium)). Each AuNP type appeared to adsorb Suwannee River Humic Acid (SRHA) as evidenced by measurable decreases in zeta potential in the presence of 5 mg C L(-1) SRHA. It was found that 5 mg C L(-1) SRHA provided a stabilizing effect at low ionic strength and in the presence of only monovalent ions while elevated concentrations of divalent cations lead to enhanced aggregation. The colloidal stability of the NPs in the absence of NOM is a function of capping agent, pH, ionic strength, and electrolyte valence. In the presence of NOM at the conditions examined in this study, the capping agent is a less important determinant of stability, and the adsorption of NOM is a controlling factor.  相似文献   

13.
The synthesis and characterization of a novel catalyst for the photodecomposition of carbaryl (1-naphthyl, N-methylcarbamate) is reported. In the absence of a catalyst, but in the presence of UV light a 30 ppm solution of carbaryl decomposes with a first-order rate constant of (5.6 +/- 0.3) x 10(-5) s(-1) (298 K) and a quantum efficiency of 4.8 x 10(-3) molecules/photon. In the presence of the Ag-zeolite Y catalyst with 2.42% Ag by weight, the photodecomposition rate becomes 80 times faster. The addition of Suwannee River natural organic matter (NOM), which can inactivate photocatalysts, has a minimal effect on this system. In the presence of three different concentrations of NOM and 30 ppm carbaryl, our results indicate that the NOM increases or decreases the catalytic photodecomposition rate by only a factor of 3 at most.  相似文献   

14.
Existing toxicity data indicate that industrial-scale production of C60 fullerene poses a potential threat to the environment. Evaluating the environmental impact of C60 requires careful characterization of its physicochemical properties in the natural aqueous environment. Our study aims to determine the effects of aquatic natural organic matter (NOM) on the physicochemical properties of aqueous C60 nanoparticles, nC60. Stable nC60 suspensions were formed using three different solvent exchange protocols. They were thoroughly characterized for particle size, morphology, and electrophoretic mobility in the absence or presence of two model NOM components, Suwannee River humic acid and fulvic acid. NOM caused disaggregation of nC60 crystals and aggregates under typical solution conditions of natural water, leading to significant changes in particle size and morphology. Such effect increased with increasing NOM concentration. The changes in nC060 size and morphology strongly depended on the nC60 formation pathway. Results from this study indicate that NOM may play a critical role in the transport and toxicity of C60 in the natural aqueous environment.  相似文献   

15.
The nature of interparticle forces acting on colloid particle surfaces with adsorbed surface films of the internationally used humic acid standard material, Suwannee River Humic Acid (SHA), has been investigated using an atomic force microscope (AFM). Two particle surfaces were used, alumina and a hydrous iron oxide film coated onto silica particles. Adsorbed SHA dominated the interactive forces for both surface types when present. At low ionic strength and pH > 4, the force curves were dominated by electrostatic repulsion of the electrical double layers, with the extent of repulsion decreasing as electrolyte (NaCl) concentration increased, scaling with the Debye length (kappa(-1)) of the electrolyte according to classical theory. At pH approximately 4, electrostatic forces were largely absent, indicating almost complete protonation of carboxylic acid (-COOH) functional groups on the adsorbed SHA. Under these conditions and also at high electrolyte concentration ([NaCl] > 0.1 M), the absence of electrostatic forces allowed observation of repulsion forces arising from steric interaction of adsorbed SHA as the oxide surfaces approached closely to each other (separation < 10 nm). This steric barrier shrank as electrolyte concentration increased, implying tighter coiling of the adsorbed SHA molecules. In addition, adhesive bridging between surfaces was observed only in the presence of SHA films, implying a strong energy barrier to spontaneous detachment of the surfaces from each other once joined. This adhesion was especially strong in the presence of Ca2+ which appears to bridge SHA layers on each surface. Overall, our results show that SHA is a good model for the NOM adsorbed on colloids.  相似文献   

16.
This study investigates the contributions of natural organic matter (NOM) and bacteria to the aggregation and deposition of TiO(2) nanoparticles (TNPs) in aquatic environments. Transport experiments with TNPs were conducted in a microscopic parallel plate system and a macroscopic packed-bed column using fluorescently tagged E. coli as a model organism and Suwannee River Humic Acid as a representative NOM. Notably, TNPs were labeled with fluorescein isothiocyanate allowing particles and cells to be simultaneously visualized with a fluorescent microscope. Results from both experimental systems revealed that interactions among TNPs, NOM, and bacteria exhibited a significant dependence on solution chemistry (pH 5 and 7) and ion valence (K(+) and Ca(2+)), and that these interactions subsequently affect TNPs deposition. NOM and E. coli significantly reduced deposition of TNPs, with NOM having a greater stabilizing influence than bacteria. Ca(2+) ions played a significant role in these interactions, promoting formation of large clusters of TNPs, NOM, and bacteria. TNPs transport in the presence of both NOM and E. coli resulted in much less deposition than in the presence of NOM or E. coli alone, indicating a complex combination of interactions involved in stabilization. Generally, over the aquatic conditions considered, the extent of TNPs deposition follows: without NOM or bacteria > with bacteria only > with NOM only > combined bacteria and NOM. This trend should allow better prediction of the fate of TNPs in complex aquatic systems.  相似文献   

17.
Photosensitized degradation of bisphenol A by dissolved organic matter   总被引:1,自引:0,他引:1  
The direct and indirect photolysis of bisphenol A (BPA) was investigated using a solar simulator in the absence and presence of dissolved organic matter (DOM). BPA degradation by direct photolysis was significantly slower than its rate in the presence of DOM. In natural waters, the direct photolytic pathway would be even less important due to light screening effects. Surprisingly, differences in the rate of indirect BPA photolysis were relatively small between DOM samples. Two of the DOM samples represented terrestrial (Suwannee River fulvic acid) and autochthonous (Lake Fryxell) geochemical endmembers. The third DOM (Fulton County, Ohio) was derived from a temperate artificial wetland. We were unable to correlate BPA photoreactivity to the structural components of DOM or its extinction coefficient at 280 nm. The addition of methanol, a hydroxyl radical scavenger, to reaction solutions slowed but did not completely quench the indirect photolysis of BPA. This observation suggests that BPA photodegrades via multiple pathways involving other transients formed by the photolysis of DOM. Competitive experiments using 2,4,6-trimethylphenol also reduce the reaction rate of BPA by DOM and implythat other DOM-derived phototransients (e.g., excited triplet state DOM) are involved in the reaction. The reaction rate coefficients reported under solar-simulated irradiance in the presence of DOM are significantly faster than those reported for the microbial degradation of BPA. Thus, in natural surface waters photosensitized transformation of BPA by dissolved organic matter may be as important as biodegradation.  相似文献   

18.
Engineered nanoparticles (ENPs) from industrial applications and consumer products are already being released into the environment. Their distribution within the environment is, among other factors, determined by the dispersion state and aggregation behavior of the nanoparticles and, in turn, directly affects the exposure of aquatic organisms to EPNs. The aggregation behavior (or colloidal stability) of these particles is controlled by the water chemistry and, to a large extent, by the surface chemistry of the particles. This paper presents results from extensive colloidal stability tests on commercially relevant titanium dioxide nanoparticles (Evonik P25) in well-controlled synthetic waters covering a wide range of pH values and water chemistries, and also in standard synthetic (EPA) waters and natural waters. The results demonstrate in detail the dependency of TiO(2) aggregation on the ionic strength of the solution, the presence of relevant monovalent and divalent ions, the presence and copresence of natural organic matter (NOM), and of course the pH of the solution. Specific interactions of both NOM and divalent ions with the TiO(2) surfaces modify the chemistry of these surfaces resulting in unexpected behavior. Results from matrix testing in well-controlled batch systems allow predictions to be made on the behavior in the broader natural environment. Our study provides the basis for a testing scheme and data treatment technique to extrapolate and eventually predict nanoparticle behavior in a wide variety of natural waters.  相似文献   

19.
The deposition behavior of cerium dioxide (CeO(2)) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied in quartz crystal microbalance with dissipation (QCM-D) to examine the effect of these mineral phases on CeO(2) deposition in NaCl solution (1-200 mM). Frequency and dissipation shift followed the order: silica > iron oxide > alumina in 10 mM NaCl at pH 4.0. No significant deposition was observed at pH 6.0 and 8.5 on any of the tested sensors. However, ≥ 94.3% of CeO(2) NPs deposited onto Ottawa sand in columns in 10 mM NaCl at pH 6.0 and 8.5. The inconsistency in the different experimental approaches can be mainly attributed to NP aggregation, surface heterogeneity of Ottawa sand, and flow geometry. In QCM-D experiments, the deposition kinetics was found to be qualitatively consistent with the predictions based on the classical colloidal stability theory. The presence of low levels (1-6 mg/L) of Suwannee River humic acid, fulvic acid, alginate, citric acid, and carboxymethyl cellulose greatly enhanced the stability and mobility of CeO(2) NPs in 1 mM NaCl at pH 6.5. The poor correlation between the transport behavior and electrophoretic mobility of CeO(2) NPs implies that the electrosteric effect of OM was involved.  相似文献   

20.
Stoichiometry of removal of natural organic matter by ion exchange   总被引:2,自引:0,他引:2  
Five anion exchange resins, including a magnetic ion exchange (MIEX) resin, were evaluated for removal of Suwannee River Fulvic Acid (SRFA) in the presence of bicarbonate and chloride. The charge density of SRFA, obtained by potentiometric titration, was used to perform charge balances for ion exchange reactions involving SRFA, bicarbonate, and chloride under different solution conditions. The results clearly show the equivalence of SRFA uptake and chloride release by ion exchange. Although the structure of the anion exchange resins did not affect the stoichiometry of the reaction, the polyacrylic resins did exhibit greater removal of SRFA than the polystyrene resins. The hindered removal of SRFA by the polystyrene resins was hypothesized to be a result of size exclusion. The MIEX resin, which has a polyacrylic structure, performed similarly to the other polyacrylic resins. For the MIEX resin, the separation factor for SRFA over chloride was approximately 8 times greater than for bicarbonate over chloride. This work provides an improved understanding of the interactions between natural organic matter (NOM), inorganic anions, and anion exchange resins, and should result in more effective applications of ion exchange for the removal of NOM in the treatment of drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号