首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
Degenerate four-wave mixing (DFWM) line shapes and signal intensities are measured experimentally in well-characterized hydrogen-air flames operated over a wide range of equivalence ratios. We use both low (perturbative) and high (saturating) beam intensities in the phase-conjugate geometry. Resonances in the A 2Sigma+ -X 2II (0,0) band of OH are probed with multiaxial-mode laser radiation. The effects of saturation on the line-center signal intensity and the resonance linewidth are investigated. The DFWM signal intensities are used to measure OH number densities in a series of near-adiabatic flames at equivalence ratios ranging from 0.5 to 1.5. Use of saturating pump intensities minimizes the effects of beam absorption, providing more-accurate number density measurements. The saturated DFWM results are in excellent agreement with OH absorption measurements and equilibrium calculations of OH number density. The polarization dependence of the P(1)(2) and R(2)(1) resonances is investigated in both laser intensity regimes. There is a significant change in relative reflectivities for different polarization configurations when saturated.  相似文献   

2.
Aizawa T 《Applied optics》2001,40(27):4894-4903
The in situ quantitative profiles of temperature and OH radical concentration in a postflame region of methane-air premixed counterflow flames were measured by wavelength modulation spectroscopy with a 1.5-mum external cavity diode laser. The second harmonic (2f) signal was generated from absorption by overtone vibrational-rotational transitions of OH: the ?(3/2) (v?, v?) = (2, 0) P11.5e (nu(0) = 6421.35 cm(-1)) or the ?(3/2) (v?, v?) = (3, 1) P5.5f (nu(0) = 6434.61 cm(-1)) transitions. The absorption occurred in the postflame region between methane-air premixed twin flames stabilized in a two-dimensional laminar counterflow burner (Tsuji burner) with a 60-mm line-of-sight path length. The temperature and OH concentration profiles at an equivalence ratio of phi = 0.85 were determined by least-squares fitting of theoretical 2f line shapes to the experimental counterparts and by calculation of the ratio of the line intensities of the two different OH transitions (two-line thermometry). The measured temperature and OH concentration profiles were cross checked by Rayleigh scattering thermometry, thermocouple measurements, and two-dimensional numerical prediction of premixed combustion by use of a detailed chemical kinetic mechanism. The measurements and the prediction showed reasonable agreement.  相似文献   

3.
Aizawa T  Kamimoto T  Tamaru T 《Applied optics》1999,38(9):1733-1741
Wavelength-modulation spectroscopy with a standard commercial 1.55-microm distributed-feedback diode laser was applied to in situ quantitative measurements of OH radical concentration in combustion environments. The second-harmonic (2f) signal was generated from absorption by the P11.5 (nu', nu") = (2, 0) overtone vibrational transition of OH at 6421.354 cm(-1). The absorption occurred in the postflame region of a two-dimensional laminar counterflow burner (Tsuji burner) with a 60-mm line-of-sight path length. The postflame region lies between propane-air premixed twin flames stabilized in the Tsuji burner at various equivalence ratios (phi = 0.65-1.0). The OH concentrations were determined by least-squares fitting of theoretical f line shapes to the experimental counterparts. The measured OH concentrations were in general agreement with adiabatic chemical equilibrium predictions. The lower limit of OH detectivity by multiline deconvolution was limited by ubiquitous unidentified high-temperature H(2)O transitions.  相似文献   

4.
Sutton JA  Driscoll JF 《Applied optics》2003,42(15):2819-2828
This study quantifies the range of premixed flame conditions for which CH fluorescece diagnostics are applicable, and it shows that the CH fluorescence signal can be increased if some of the hydrocarbon fuel is replaced with hydrogen. The CH fluorescence signal is found to be adequate for fuel-air equivalence ratios (phi) as small as 0.85 for both methane-air and propane-air flames. The CH signal increases until a maximum at phi = 1.25 and phi = 1.35 for methane-air and propane-air flames, respectively, and then decreases for richer conditions. A strategy to increase the CH fluorescence signal and decrease interference from soot precursors is proposed by addition of the proper amount of hydrogen to the hydrocarbon fuel. Hydrogen addition reduces the background signal from soot precursors by as much as afactor of 10 and increases the CH fluorescence signal by as much as 80%. The normalized CH fluorescence measurements are compared with computations that utilize GRI-MECH 3.0 chemistry. Sources experimental uncertainties are discussed.  相似文献   

5.
Picosecond time-resolved laser-induced fluorescence (PITLIF) can potentially be used to obtain measurements of minor species concentrations in rapidly fluctuating flames. Previous studies demonstrated this potential for atomic sodium by monitoring the temporal fluorescence signal with both an equivalent-time and a real-time sampling method. In this developmental study, PITLIF is used to determine hydroxyl concentrations in laminar CH(4)-O(2)-N(2) flames by the measurement of both the integrated fluorescence signal and the fluorescence lifetime. The quenching environment can be monitored with real-time sampling, and thus the necessary quenching rate coefficient is obtained in 348 us, which is fast enough for use in many turbulent flows. Fluorescence lifetimes of OH are also measured at different equivalence ratios in laminar flames by the use of the equivalent-time sampling technique. These results compare favorably with predicted lifetimes based on relevant quenching cross sections and calculated species concentrations.  相似文献   

6.
Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.  相似文献   

7.
Meyer TR  Roy S  Gord JR 《Applied spectroscopy》2007,61(11):1135-1140
There is growing interest in the use of short-pulse lasers for coherent anti-Stokes Raman scattering (CARS) to minimize non-resonant background (NRB) contributions in a variety of applications. Using time-coincident picosecond (ps) pump and Stokes beams and a time-delayed ps probe beam, we show that a three orders of magnitude reduction in NRB interference can be achieved in rich hydrocarbon-air flames while preserving 60% to 80% of the CARS signal. This represents a significant improvement in signal-to-interference ratio compared with previous measurements in room temperature air and is attributable to reduced rates of collisional dephasing and relaxation at flame temperatures. Measurements within the flame zone of a laminar flat-flame burner are used to investigate the characteristics of time-coincident and probe-delayed broadband ps N(2)-CARS spectra for C(2)H(4)-air equivalence ratios of 0.5 to 1.2. Up to three ro-vibrational bands of N(2) are excited with each laser shot using 135 ps pump and 106 ps Stokes beams, and the CARS signal is generated using a 135 ps probe beam delayed by 165 ps. The enhanced signal-to-interference ratio achieved in the current work is one to two orders of magnitude higher than that previously achieved using polarization-selection techniques without sensitivity to the effects of birefringence caused by density gradients or test cell windows. Moreover, the use of a 135 ps laser source in this study enables frequency domain "broadband" CARS with sufficient resolution to extract ro-vibrational spectral features under various flame conditions. The effect of probe delay and NRB suppression on characteristics of these broadband CARS spectra are investigated, and evidence of preferential collisional dephasing and relaxation of different ro-vibrational transitions is not detected. This is a promising but preliminary result to be investigated further in future work.  相似文献   

8.
Kelman JB  Masri AR 《Applied optics》1994,33(18):3992-3999
We describe a diagnostic technique for obtaining quantitative, simultaneous, and instantaneous images of temperature and the concentration of the hydroxyl radical OH in turbulent flames. The technique uses a single laser source and a single intensified CCD camera. A stoichiometric premixed flame is used for calibration. We use detailed calculations of laminar flames of similar fuels to estimate the effects of quenching and ground-state population on the OH signal. A factor combining both effects is generated as a function of temperature. We validate the technique by comparing measured temperature and OH number density with calculated values in laminar diffusion flames. Absolute errors of 10-20% and 20-30% are estimated on the measured temperature and OH number density, respectively. The technique is applicable to regions of the flames where the Rayleigh cross section is close to that of air.  相似文献   

9.
Three different high-pressure flame measurement strategies for NO laser-induced fluorescence (LIF) with A-X(0,0) excitation have been studied previously with computational simulations and experiments in flames up to 15 bars. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increased pressure. We investigate the NO LIF signal strength, interference by hot molecular oxygen, and temperature dependence of the three previous schemes and for two newly chosen excitation schemes with wavelength-resolved LIF measurements in premixed methane and air flames at pressures between 1 and 60 bars and a range of fuel/air ratios. In slightly lean flames with an equivalence ratio of 0.83 at 60 bars, the contribution of O2 LIF to the NO LIF signal varies between 8% and 29% for the previous schemes. The O2 interference is best suppressed with excitation at 226.03 nm.  相似文献   

10.
Li Y  Gupta R 《Applied optics》2003,42(12):2226-2235
It is experimentally demonstrated that absolute concentrations of minority species in flames can be measured by the photothermal deflection spectroscopy (PTDS) technique. In addition, the PTDS signal simultaneously yields the flame temperature the measurement point. Absolute concentration profiles of OH have been measured in a flat-flame burner with methane as fuel. The PTDS measurements agree well with those obtained independently by the absorption technique. The flame temperature measurements by PTDS are also in good agreement with those obtained by the Boltzmann distribution among the rotational levels of OH.  相似文献   

11.
Xiao X  Puri IK  Agrawal AK 《Applied optics》2002,41(10):1922-1928
We focus on the utility of rainbow schlieren as a tool for measuring the temperature of axisymmetric partially premixed flames (PPFs). Methane-air PPFs are established on a coannular burner. The flames involve two spatially distinct reaction zones, one in an inner premixed region that has a curved tip and a spatially planar wing portion and another that involves an outer nonpremixed zone in which intermediate species burn in air. Schlieren images are found to visualize clearly these PPF characteristics through light deflection by steep refractive-index gradients in the two reaction zone fronts. The temperature distributions of two flames established at fuel-rich mixture equivalence ratios of phi(r) = 1.5 and 2.0, with bulk-averaged velocities, Vreac = 60 cm s(-1) and Vair = 50 cm s(-1), are inferred from color schlieren images, and a measurement error analysis is performed. Errors arise from two sources. One lies in the process of inferring the temperature from the refractive-index measurement by making assumptions regarding the local composition of the flame. We have shown through simulations that the average temperature deviations due to these assumptions are 1.7% for the phi(r) = 1.5 flame and 2.3% for the phi(r) = 2.0 flame. Another source involves the local uncertainty in the measurement of the transverse ray displacement at the filter plane that is used to determine the refractive index and thereafter the flame temperature. We have ascertained that a maximum error of 4.3% in the temperature determination can be attributed to this local measurement uncertainty. This investigation demonstrates the capability of the schlieren technique for providing not only qualitative displays of the PPFs but also full-field-of-view temperature measurements that are accurate, spatially resolved, and nonintrusive.  相似文献   

12.
Brown MS  Rahn LA  Lucht RP 《Applied optics》1995,34(18):3274-3280
The degenerate four-wave-mixing spectral profile of the R(1)(9) transition in the A(2)Σ(+) ? X(2)∏(0, 0) band of OH has been measured for various combinations of saturating pump beams. With increasing pumpbeam intensity the degenerate four-wave-mixing line shape changes dramatically near line center. In phase-conjugate geometry, three distinct spectral line shapes were observed for the cases of (1) equally intense pump beams, (2) a strong forward pump and a weak backward pump, and (3) a weak forward pump and an intense backward pump. A significant saturation dip appears in the spectrum near line center for case (3). The measured spectra have been modeled by the use of nonperturbative numerical solutions of the density matrix equations, and agreement between the calculations and the experimental results is excellent. The differences in the saturated line shapes for cases (2) and (3) are explored theoretically, and the calculated results are compared with previous theoretical work [Bloch and Ducloy, J. Opt. Soc.Am. 73, 635 (1985)] in which the line shapes were calculated in the limit of infinite Doppler broadening.  相似文献   

13.
An experimental technique is presented that both minimizes and accounts for the interference background when laser-induced-fluorescence (LIF) measurements are made of NO in lean, high-pressure, premixed, CH(4)/O(2)/N(2) flames. Measurement interferences such as fluorescence and Raman scattering from secondary species become increasingly important for high-pressure LIF studies. O(2) fluorescence interferences are particularly troublesome in lean premixed flames. An excitation-detection scheme that minimizes the effects of these interferences is identified. A procedure that corrects the resulting LIF signal so as to account for any remaining interference signal is then developed. This correction is found to vary from less than 10% of the overall NO signal at atmospheric pressure to over 40% of the overall signal at 14.6 atm for LIF measurements of NO in a series of worst-case flames (phi = 0.6, dilution ratio 2.2). The correction technique is further demonstrated to be portable over a useful range of flame conditions at each pressure.  相似文献   

14.
Luminescence, induced absorption and degenerate four wave mixing experiments are performed on GaN epilayers grown on a sapphire substrate by MOCVD. We measure the nonlinear behaviour of the luminescence spectra near the excitonic resonance, by using an excitation at 4.026 eV from an excimer laser. At low intensities of excitation, spectra show a saturation of the I2 line due to the finite donor density in the sample. Higher intensities of excitation induce collision process between photo-created particles. Using a dye laser as a pump beam, we measure the induced variation of absorption of a probe beam as a function of the intensity and of the wavelength of the excitation. With increasing intensities of the pump beam, curves show a red-shift of the absorption edge and of the excitonic resonance. Pulsed degenerate four-wave mixing experiments were performed using the third harmonics of a picosecond Nd-YAG laser at 3.492 eV. A characteristic time of 16 ps has been measured, which is independent of the temperature, of the fringe spacing and of the intensity of the pump beams.  相似文献   

15.
In our laboratory, we have measured the frequencies of CO2 and He-Ne lasers near 30 and 88 THz, stabilized, respectively, by saturated fluorescence in CO2 and saturated absorption in CH4. Our measurement system includes a stable free-running optically pumped CH3OH laser at 4.25 THz replacing the noisy H2O laser used as a transfer oscillator in early experiments. As a result of the reduced mixing orders (?9), beat notes between lasers are now observed with ?30-dB signal-to-noise (S/N) ratios in a 100-kHz bandwidth. Therefore, beat frequencies can be measured accurately with digital counters and simultaneous counting of the frequencies involved largely eliminates the uncertainties due to transfer oscillators. The measurements are referred to the cesium beam frequency standard. The results are processed by a desktop calculator which also controls the measurement process.  相似文献   

16.
The temperature dependence of laser-induced NO A (2)?(+)-X (2)? fluorescence in the hot gases of natural gas-air flames, seeded with known quantities of NO, has been determined experimentally by means of a difference method. The flame temperature at three fixed equivalence ratios was changed when the mixture velocity was varied through a water-cooled, flat-flame burner and was measured by coherent anti-Stokes Raman spectroscopy. When the possible reburning of part of the seeded NO is allowed for, the results in the range 1700-2150 K are best described by the temperature dependence obtained from a model in which quenching corrections are neglected, as in the case of a saturated two-level system, when millijoule pulse energies are used. Measurements of the fluorescence intensity at constant seed concentration as a function of equivalence ratio between 0.75 and 1.3 also indicate that quenching corrections are unnecessary under these excitation conditions. Using the measured intensities of the seeded flame as a calibration factor, we determined the absolute NO concentrations as functions of the equivalence ratio at 1 cm above the burner. The results indicate that, with the calibration method presented here, a relative accuracy of 5% should be obtainable.  相似文献   

17.
The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.  相似文献   

18.
Laser-induced breakdown spectroscopy (LIBS) has been used to measure the equivalence ratio of a spark-ignited engine in a laboratory setting. Spectral features of C (711.3 nm), O (776.6 nm), N (746.3 and 743.8 nm), and CN (broad emission 707-734 nm) were used to quantify the equivalence ratio over a range from phi = 0.8 to phi = 1.2. The C/N and C/O peak ratios were found to be successful measurement metrics, compared with a standard exhaust gas oxygen analyzer, for averaged measurements. Some variation in the measurements was observed as a function of engine load. Single-shot data based on a CN/air peak ratio were evaluated using a separate calibration from averaged measurements, and the average of the single-shot data was found to agree well with the exhaust gas oxygen analyzer. The scatter in the single-shot data was substantially higher at lower equivalence ratios. The measurements including the CN peak were slightly sensitive to load, possibly due to pressure changes in the sample as the load increases, or possibly due to changes in the particle size distribution in the gas stream.  相似文献   

19.
Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 microm spectral region (2v1 and vl + v3 overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.  相似文献   

20.
A-X(0,1) excitation is a promising new approach for NO laser-induced fluorescence (LIF) diagnostics at elevated pressures and temperatures. We present what to our knowledge are the first detailed spectroscopic investigations within this excitation band using wavelength-resolved LIF measurements in premixed methane/air flames at pressures between 1 and 60 bar and a range of fuel/air ratios. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increased pressure. Three different excitation schemes are identified that maximize NO/O2 LIF signal ratios, thereby minimizing the O2 interference. The NO LIF signal strength, interference by hot molecular oxygen, and temperature dependence of the three schemes are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号