首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fair bandwidth allocation (FBA) has been studied in optical burst switching (OBS) networks, with the main idea being to map the max-min fairness in traditional IP networks to the fair-loss probability in OBS networks. This approach has proven to be fair in terms of the bandwidth allocation for differential connections, but the use of the ErlangB formula to calculate the theoretical loss probability has made this approach applicable only to Poisson flows. Furthermore, it is necessary to have a reasonable fairness measure to evaluate FBA models. This article proposes an approach involving throughput-based-FBA, called TFBA, and recommends a new fairness measure that is based on the ratio of the actual throughput to the allocated bandwidth. An analytical model for the performance of the output link with TFBA is also proposed.  相似文献   

2.
One promising switching technology for wavelength-division multiplexing optical networks is optical burst switching (OBS). However, there are major deficiencies of OBS. (1) The delay offset between a control message and its corresponding data burst is based on the diameter of a network. This affects network efficiency, quality-of-service, and network scalability.( 2) OBS adopts one-way resource reservation scheme, which causes frequent burst collision and, thus, burst loss. We address the above two important issues in OBS. In particular, we study how to improve the performance of delay and loss in OBS. To reduce the end-to-end delay, we propose a hybrid switching scheme. The hybrid switching is a combination of lightpath switching and OBS switching. A virtual topology design algorithm based on simulated annealing to minimize the longest shortest path through the virtual topology is presented. To minimize burst collision and loss, we propose a new routing algorithm, namely, p-routing, for OBS network. The p-routing is based on the wavelength available probability. A path that has higher available probability is less likely to drop bursts due to collision. The probability-based p-routing can reduce the volatility, randomness, and uncertainty of one-way resource reservation. Our studies show that hybrid switching and p-routing are complementary and both can dramatically improve the performance of OBS networks.  相似文献   

3.
李彦君  洪小斌  郭宏翔  伍剑  林金桐 《电子学报》2005,33(11):2040-2043
光突发交换(OBS)相对传统的电路交换方式具有更高的传输效率和更短的网络时延,而相对于未来网络的发展趋势光分组交换,光突发交换具备更现实的可行性.在OBS中,突发汇聚是一个很关键的技术,它对OBS网络的性能有着重要的影响,在本文中,我们对突发汇聚机制进行了较深入的研究,并提出了一种新的突发汇聚算法,它对抑制网络流量的自相似性,提高突发传输效率和避免在不同节点由于突发同步所引起的带宽资源竞争都有较好的结果.  相似文献   

4.
Presently, optical burst switching (OBS) technology is under study as a promising solution for the backbone of the optical Internet in the near future because OBS eliminates the optical buffer problem at the switching node with the help of no optical/electro/optical conversion and guarantees class of service without any buffering. To implement the OBS network, there are a lot of challenging issues to be solved. The edge router, burst offset time management, and burst assembly mechanism are critical issues. In addition, the core router needs data burst and control header packet scheduling, a protection and restoration mechanism, and a contention resolution scheme. In this paper, we focus on the burst assembly mechanism. We present a novel data burst generation algorithm that uses hysteresis characteristics in the queueing model for the ingress edge node in optical burst switching networks. Simulation with Poisson and self‐similar traffic models shows that this algorithm adaptively changes the data burst size according to the offered load and offers high average data burst utilization with a lower timer operation. It also reduces the possibility of a continuous blocking problem in the bandwidth reservation request, limits the maximum queueing delay, and minimizes the required burst size by lifting up data burst utilization for bursty input IP traffic.  相似文献   

5.
Optical burst switching (OBS) is a promising technology for next-generation optical networks. Slotted OBS is an improved version of OBS to reduce burst loss rate, in which wavelength channels are divided into time slots. Slotted OBS has an implicit and under-used property that resources for two bursts with the same source and the same destination are interchangeable. The property further means that resource for a long-distance burst can be partially used by a short-distance burst. In this paper, we utilize the property to design a resource reservation scheme for slotted OBS networks. The scheme reserves a batch of slots every time; the specific number of slots is calculated according to number of arrived bursts and partial success rate (a newly introduced conception in this paper) at each node. Simulation results show that the proposed scheme can get lower burst loss rate, comparing with the well-performing two-way signaling scheme.  相似文献   

6.
Optical burst switching (OBS) provides a promising solution to utilize the huge terahertz bandwidth of optical wavelength division multiplexing (WDM) transmission technology. To exploit this bandwidth, several reservation schemes have been proposed that include just‐in‐time (JIT) signaling, just‐enough‐time (JET) signaling and burst segmentation (BS). It is necessary to investigate the performance of these schemes under the same constraints for a prescribed OBS application. Accordingly, in this paper, we analyzed and compared the performance of JIT, JET and BS techniques under various scenarios such as network size, delay variation and load variation in an OBS network using various performance metrics, such as the offset time and switch configuration time. Also, the performance of the network under various switching delays was also investigated. The modified BS reservation scheme has been found to yield significantly better performance and better throughput compared with the JIT and JET reservation schemes. Test results show that the effect of varying loads as well as delays significantly impacts the performance of the OBS network. The results presented in this paper are expected to lead further performance improvements in OBS networks using the BS reservation scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Nowadays, network operators are steadily deploying optical circuit switching (OCS) equipment in their metropolitan networks in order to cope with traffic increase and, most importantly, in order to reduce capital expenditures and operational expenditures of existing active technologies. On the other hand, optical burst switching (OBS) technology is expected to become mature in the medium term, and it may be used as an alternative to current OCS networks due to its potential advantages in terms of bandwidth allocation granularity. While OBS is being extensively studied in the literature, little attention has been paid in conducting a comparative analysis of OBS versus OCS, especially concerning cost analysis. In this paper, we provide a comparative analysis of OBS versus OCS as an evolutionary technology for all-optical rings in the metropolitan-access network. This paper is specifically targeted toward optimizing the number of optoelectronic receivers and wavelengths with real traffic matrices from the metropolitan rings in Madrid, Spain. Such matrices also include traffic projections of foreseeable broadband services, which are based on a market analysis from the largest operator in Spain. Our findings show that OCS might be more efficient than OBS in the metro-access segment, which is characterized by a highly centralized traffic pattern. However, the more distributed the traffic is, the more efficient the OBS is as well. Consequently, OBS might be better suited to metro-core networks, which show a more distributed and dynamic traffic pattern.  相似文献   

8.
FRR for latency reduction and QoS provisioning in OBS networks   总被引:13,自引:0,他引:13  
We propose a forward resource reservation (FRR) scheme to reduce the data burst delay at edge nodes in optical burst switching (OBS) systems. We also explore algorithms to implement the various intrinsic features of the FRR scheme. Linear predictive filter (LPF)-based methods are investigated and demonstrated to be effective for dynamic burst-length prediction. An aggressive resource reservation algorithm is proposed to deliver a significant performance improvement with controllable bandwidth cost. By reserving resources in an aggressive manner, an FRR system can reduce both the signaling retransmission probability and the bandwidth wastage as compared with a system without the aggressive reservation. An FRR-based QoS strategy is also proposed to achieve burst delay differentiation for different classes of traffic. Theoretical analysis and simulation results verify the feasibility of the proposed algorithms and show that our FRR scheme yields a significant delay reduction for time-critical traffic without incurring a deleterious bandwidth overhead.  相似文献   

9.
The concept of optical burst switching (OBS) aims to allow access to optical bandwidth in dense wavelength division multiplexed (DWDM) networks at fractions of the optical line rate to improve bandwidth utilization efficiency. This paper studies an alternative network architecture combining OBS with dynamic wavelength allocation under fast circuit switching to provide a scalable optical architecture with a guaranteed QoS in the presence of dynamic and bursty traffic loads. In the proposed architecture, all processing and buffering are concentrated at the network edge and bursts are routed over an optical transport core using dynamic wavelength assignment. It is assumed that there are no buffers or wavelength conversion in core nodes and that fast tuneable laser sources are used in the edge routers. This eliminates the forwarding bottleneck of electronic routers in DWDM networks for terabit-per-second throughput and guarantees forwarding with predefined delay at the edge and latency due only to propagation time in the core. The edge burst aggregation mechanisms are evaluated for a range of traffic statistics to identify their impact on the allowable burst lengths, required buffer size and achievable edge delays. Bandwidth utilization and wavelength reuse are introduced as new parameters characterizing the network performance in the case of dynamic wavelength allocation. Based on an analytical model, upper bounds for these parameters are derived to quantify the advantages of wavelength channel reuse, including the influence of the signaling round-trip time required for lightpath reservation. The results allow to quantify the operational gain achievable with fast wavelength switching compared to quasistatic wavelength-routed optical networks and can be applied to the design of future optical network architectures  相似文献   

10.
In optical burst switching (OBS) networks, burst contentions in OBS core nodes may cause data loss. To reduce data loss, retransmission scheme has been applied. However, uncontrolled retransmission may increase network load significantly and data loss probability defeating the retransmission purpose. In addition, in a priority traffic existing OBS network, OBS nodes may apply different retransmission mechanisms to priorities bursts for quality-of-service (QoS) support. This study has developed a controlled retransmission scheme for prioritized burst segmentation to support QoS in OBS networks. Unlike previous works in the literature, we have set a different value to retransmission probability at each contention and propose a retransmission analytical model for burst segmentation contention resolution scheme. In addition, we have applied the proposed retransmission scheme to the prioritized burst segmentation for QoS support. We have taken into account the load at each link due to both fresh and retransmitted traffic, and have calculated the path blocking probability and byte loss probability (ByLP) for high-priority and low-priority burst to evaluate network performance. An extensive simulation has been proposed to validate our analytical model.  相似文献   

11.
突发包冲突在无光缓存能力的光突发交换(OBS)网络中是一个尚未解决的问题.在对JET协议进行改进的基础上,文章首次提出了一种新型的突发包冲突解决方案,分析了其可行性及相对传统算法的优势.  相似文献   

12.
Optical burst switching (OBS) is a promising technique for wavelength division multiplexing (WDM) networks. In practice, wavelength converters (WCs) are either absent or only sparsely deployed in WDM networks due to economic and technical limitations. Thus, wavelength assignment is expected to be an important component of OBS networks. In this paper, an offline wavelength assignment scheme in OBS networks without wavelength conversion capability is proposed. The key idea of the scheme is to decide the wavelength searching order of each traffic connection at edge nodes according to the wavelength priorities determined by the calculated burst loss probabilities on different wavelengths. Simulation results indicate that the proposed scheme can reduce the network-wide burst loss probability significantly compared with other schemes. It is also illustrated that the performance of the proposed scheme can be further enhanced by a larger number of wavelengths per link and a reasonable delay bound at edge nodes.  相似文献   

13.
Optical Burst Switching (OBS) has been proposed as a promising switching technology for the next generation of optical transport networks. In this paper, we address the issue of how to provide proportional differentiated services in OBS networks. Firstly, a Dynamic Wavelength Selection (DWS) scheme is introduced to provide proportional differentiated services in bufferless OBS networks by dynamically assigning more and longer periods of wavelengths to high priority classes. This scheme can also utilize wavelengths efficiently because the wavelengths are shared among different classes. Next, a Delayed Burst Assignment (DBA) scheme is introduced, by which bursts of the high priority class are given a higher probability for reserving wavelengths by scheduling the bursts of the low priority class with a delay to provide quality of service (QoS) in OBS networks. The integration of these two schemes provides proportional differentiated services and improves the burst loss performance by giving the burst head packet (BHP) two opportunities of scheduling its data burst (DB).  相似文献   

14.
光突发交换(OBS)被认为是下一代光网络中的有效核心交换技术之一,设计OBS网络的最初目的之一是减小突发包丢失率.解决突发竞争的方法主要包括光缓存、波长变换、偏射路由和突发分段.提出一种改进偏射路由方案,并建立了数学模型,对改进方案的性能进行了仿真分析,结果表明改进方案能更好的提高网络整体性能.  相似文献   

15.
Optical burst switching (OBS) is the most favourable switching paradigm for future all‐optical networks. Burst assembly is the first process in OBS and it consists of aggregating clients packets into bursts. Assembled bursts wait for an offset time before being transmitted to their intended destinations. Offset time is used to allow burst control packet reserve required resources prior to burst arrival. Burst assembly process and offset‐time create extra delay in OBS networks. To make OBS suitable for real time applications, this extra latency needs to be controlled. This paper proposes and evaluates a novel offset time and burst assembly scheme to address this issue. Constant bit rate (CBR) traffic that has stringent end‐to‐end delay QoS requirements is used in this study. The proposed scheme is called hybrid offset‐time and burst assembly algorithm (H‐OTBA). The objective of the paper is achieved by controlling maximum burst transfer delay parameters of CBR. The proposed scheme was evaluated via network simulation. Simulation results demonstrate that, H‐OTBA has effectively reduced end‐to‐end delay for CBR traffic compared with current solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
光突发交换(OBS)技术能很好地支持突发业务,有希望应用于Internet核心交换.但是,OBS网络的单向预约信令方式容易造成网络拥塞和大量的突发丢失.文章在深入研究现有的OBS网络拥塞控制策略的基础上,提出了一种新的基于速率的OBS拥塞控制策略.边缘源结点向宿结点周期性地发送和接收资源管理分组(RMP),边缘源结点根据RMP中的拥塞反馈指示了解网络中的拥塞状况,并改变突发发送速率,从而解除拥塞.  相似文献   

17.
光突发交换网络中QoS方案的研究   总被引:1,自引:0,他引:1  
光突发交换是构建下一代光网络的有效交换技术,在OBS网络中如何有效地支持QoS已成为一个重要的研究课题.介绍了光突发交换网络中基于偏置时间的QoS方案和波长分组QoS方案,最后提出了一种基于波长分组技术,结合突发分片技术和Min-Sv算法的QoS的解决方案,通过建立相应的模型时其进行了仿真,仿真结果表明所提出的方案可以更好地提供区分服务,同时有效地提高了信道的利用率,降低了整体的丢失率.  相似文献   

18.
Optical burst switching (OBS) is regarded as one of the most promising switching technologies for next generation optical networks. However, the data burst contention problem is still unresolved thoroughly even though slotted OBS (SOBS) is studied as a new paradigm reducing the blocking rate. In this article, we propose a tree-based slot allocation (TSA) algorithm for loss-free SOBS networks, where the TSA algorithm originally avoids contention of the time-slots by reserving the time-slots with different time-slot positions for the source nodes, respectively. In order to manage the time-slots efficiently, we also propose an OBS superframe, which is a cyclic period and consists of multiple time-slots transmitted by the source nodes toward the same incoming port of a destination node. In addition, we attempt to optimize multiplexing of the OBS superframes to reduce wavelength consumption. On the other hand, when incoming traffic is beyond expectation, a source node may need more time-slots to prevent packet loss because of buffer overflow. For reallocation of the time-slots, we propose a flow control scheme managing some number of shared time-slots, where a control node adaptively allocates (or redeems) the time-slots to (or from) source nodes by utilizing the shared time-slots based on fluctuating traffic condition. Simulation results show that the blocking rate of the proposed TSA–OBS scheme is zero with acceptable queueing delay at moderate traffic offered loads. In addition, multiplexing optimization simulated in the 14-node NSFNET achieves a 63% reduction of wavelength consumption. Moreover, the proposed flow control scheme assisting the TSA algorithm maintains a target upper-bound of queueing delay at the source node, so that packet loss caused by buffer overflow is prevented.  相似文献   

19.
Wireless Mesh Networks (WMN) have attracted increasing attention from the research community as a high-performance and low-cost solution to last-mile broadband Internet access. On the other side, Optical Burst Switching (OBS) is a promising access technology that uses optical fiber with burst switching paradigm. In this paper, we propose a novel Metropolitan Area Network (MAN) architecture, called Optical Burst Wireless Mesh Architecture (OBWMA) which integrates WMN at the user access side and OBS at the core of the MAN. OBWMA aims to combine advantages of both WMNs and OBS networks, such as large coverage at low cost and bandwidth availability. We specify the details of the interconnection and the internetworking of WMNs and the OBS network in OBWMA. Moreover, we develop an analytical model to compute the end-to-end delay in OBWMA in order to support flow requests with delay constraints. Furthermore, we propose a Control Bridge (CB) that ensures Quality of Service (QoS) mapping at the border between the WMN and the OBS parts. Also, we propose a burst assembly scheme, called Adaptive Hybrid Burst Assembly scheme (AHBA). Simulation results using ns-2 demonstrate the feasibility of OBWMA and the validity of our analytical model.  相似文献   

20.
光突发包交换网络中的偏置时间管理   总被引:1,自引:1,他引:0  
光突发包交换是近几年出现的一种新的光交换技术,其本质是利用控制分组来预留突发包所要经过的各节点处的带宽。因此,必须要求突发包和控制分组在传送过程中保持两者之间合理的时序关系。这就是偏置时间的配置问题。首先介绍了一种典型的OBS协议-JET协议的原理,然后提出获得基本偏置时间的方案(包括无连接和面向连接两种方式)和偏置时间随机化的改进方案,最后讨论了JET协议在实施过程中可能出现的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号