首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
核燃料后处理先进二循环流程在铀钚分离及钚的纯化过程中使用的二甲基羟胺(DMHAN)-甲基肼(MMH)是一首次应用的无盐还原体系。为将Purex流程U/Pu分离阶段中得到的Pu(Ⅲ)氧化为Pu(Ⅳ),首先需将1BP槽中的还原剂N,N-二甲基羟胺和单甲基肼氧化破坏。此先进流程的主要目标之一是减少后处理过程中产生的固体废物。  相似文献   

2.
近年来,后处理工艺流程中无盐试剂的应用研究已引起了各国的重视。N,N-二甲基羟胺(DMHAN)是一类羟胺二取代衍生物,它能够快速地将Pu(Ⅳ)还原成不易被TBP萃取的Pu(Ⅲ),以实现铀钚分离。N,N-二甲基羟胺(DMHAN)在核燃料后处理Purex流程中用作Pu(Ⅳ)的还原反萃剂有着现实的应用前景,测定体系中DMHAN的浓度是研究它在流程中应用的前提。  相似文献   

3.
在乏燃料后处理Purex流程中,使用二甲基羟胺和甲基肼作为钚的还原剂和支持还原剂,这样将在1BP中存在剩余的还原剂。在对2AF料液调价的过程中,首先需将1BP中的二甲基羟胺、甲基肼完全破坏,然后才能进行钚的调价。通常的方法是向1BP料液中加入亚硝酸钠或直接通入N2O4,将Pu(Ⅲ)转变到Pu(Ⅳ)。但加入亚硝酸钠会增加料液的含盐量,增加放射性固体废物量。  相似文献   

4.
本工作的主要目的是实验研究使用新型还原剂二甲基羟胺+甲基肼在1B槽中实现铀钚分离的工艺条件。主要从3个角度对铀钚分离进行了考察:1)1BF新配制,二甲基羟胺尚未氧化时的铀钚分离状况;2)1BF陈化时间(大于两个月)对铀钚分离的影响;3)二甲基羟胺部分氧化后对铀钚分离的影响。  相似文献   

5.
先进二循环后处理流程采用新型还原剂二甲基羟胺(DMHAN)一甲基肼(MMH)来还原反萃钚(Ⅲ),取得了良好的分离纯化效果。钚纯化循环得到的硝酸钚(Ⅲ)溶液需沉淀转化才能制各二氧化钚固体产品,而在沉淀阶段需调节钚价态为四价钚(Ⅳ).  相似文献   

6.
采用可控温的单级萃取装置,对羟胺还原反萃取钚的工艺条件进行了优化。实验表明,硝酸肼能够将少量Pu(Ⅳ)还原反萃取到水相,但是当硝酸肼浓度较高时,硝酸肼则表现出盐析效应,抑制钚的还原反萃取;对于钚还原反萃取工艺来说,当保持进料中羟胺与钚的摩尔数之比为定值时(在50℃时n (HAN)/ n (Pu)=2~3较为适宜),增大还原剂流量能够提高钚的收率,但同时会降低钚的浓缩倍数;温度升高时,硝酸氧化Pu(Ⅲ)的反应速率加快,使得钚在有机相中的浓度有所升高;当溶液中离子强度较高时,在盐析效应的作用下,Pu(Ⅲ)的分配比随离子强度的提高而升高,导致钚在有机相中的浓度上升。  相似文献   

7.
采用氨基羟基脲(HSC)的硝酸水溶液研究了从30%(体积分数,下同)TBP/煤油中还原反萃高浓度四价钚(Pu(Ⅳ))的性能,并与羟胺-肼(HAN-HN)、N,N-二甲基羟胺-单甲基肼(DMHAN-MMH)在钚净化浓缩循环中反萃行为进行了对比。结果表明:在一定HSC浓度下,适当延长相接触时间、减小相比(o/a)、降低酸度和提高温度,均有利于Pu(Ⅳ)的还原反萃。HSC作为还原反萃剂,可以有效实现30%TBP/煤油中高浓钚的反萃,反萃效果较其它几种还原剂更好,有望在先进二循环流程的钚净化浓缩工艺中得到应用。  相似文献   

8.
N,N-乙基,羟乙基羟胺在PUREX流程铀钚分离中的应用   总被引:2,自引:0,他引:2  
为了解N,N-乙基,羟乙基羟胺(EHEH)在PUREX流程铀钚分离中的作用,研究了EHEH对Pu(Ⅳ)的单级反萃取行为及其影响因素。结果表明,EHEH能够迅速地将有机相中的Pu(Ⅳ)还原反萃入水相,相比(o/a)为1∶1,接触时间5s时,钚的反萃取率接近99%;相比(o/a)为4∶1时,5s内钚的反萃取率可达到80%,相比增大,Pu的反萃取率降低。低酸、升温和提高EHEH浓度有利于钚的还原反萃取。采用14级逆流串级反萃取实验(还原反萃段8级,补充萃取段6级),模拟PUREX流程1B槽U/Pu分离工艺,在相比(1BX∶1BF∶1BS)为1∶4∶1的条件下,铀的收率大于99.999%,Pu的收率大于99.99%;铀中去钚的分离因数α(Pu/U)=1.1×104;钚中去铀的分离因数α(U/Pu)=3.2×105。EHEH作为还原反萃取剂,可以有效实现铀钚分离。  相似文献   

9.
N,N—二甲基羟胺对Pu(Ⅳ)的还原反萃和相应计算机模型   总被引:2,自引:0,他引:2  
研究了N,N-二甲基羟胺(DMHAN)的HNO3溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃行为,考察了N,N-二甲基羟胺浓度、HNO3浓度、温度以及两相接触时间对Pu(Ⅳ)反萃率的影响。结果表明:延长相接触时间能显著提高钚的反萃率;增加HNO3浓度、加大DMHAN的用量、升高温度均能加快钚的反萃速率,但当相接触时间超出一定范围时,这些因素都不能显著增加钚的反萃率。编写了DMHAN单级反萃Pu(Ⅳ)的计算机模拟程序,程序计算值与实验值在一定范围内符合良好。  相似文献   

10.
镎的提取和分离是国际后处理领域重点关注的研究课题之一。在Purex流程中,硝酸肼常被用来作为亚硝酸的清扫剂,此外,由于硝酸肼对Np(VI)和Pu(IV)的氧化还原反应具有选择性,理论上可以利用其反应速率上的差异来实现镎与铀钚的分离。为探索硝酸肼分离镎/钚工艺提供可行性,本文采用单级萃取设备研究了硝酸肼还原反萃Np和Pu的过程。通过研究硝酸浓度、硝酸肼浓度和反应温度对还原反萃过程的影响,确定了Np(VI)和Pu(IV)反萃动力学方程和表现活化能。进一步通过动力学方程得出硝酸肼还原反萃Np(VI)和Pu(IV)的半反应时间,并对Np(VI)/Pu(IV)分离过程的工艺进行了初步探索。  相似文献   

11.
镎的提取和分离是后处理领域重点关注的研究课题之一。甲基肼作为一种有机无盐试剂,其还原Np(Ⅵ)的速率快于还原Pu(Ⅳ)的速率,理论上可以利用其反应速率上的差异来实现镎与钚的分离。为了探索甲基肼还原反萃分离镎、钚的可行性,本文采用单级萃取池研究了甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的过程。通过考察还原剂浓度、硝酸浓度以及反应温度和搅拌速率等条件对甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)过程的影响,确定了Np(Ⅵ)和Pu(Ⅳ)反萃动力学方程和表观活化能。通过所得的动力学方程得出甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的半反应时间,并对Np(Ⅵ)和Pu(Ⅳ)分离过程的工艺进行了初步探索。  相似文献   

12.
为将电化学应用于1BP调价制备2AF,使用无隔膜的电解池,以钛基镀铂电极为阳极,以钛电极为阴极,在恒电流的条件下进行了含钚溶液的电解实验。在含3.0 mol/L HNO3、0.15 mol/L甲基肼、0.10 mol/L二甲基羟胺、3.0 g/L Pu的电解液中,当电流密度为10~30 mA/cm2,槽电压为2.6~3.1 V时,电化学调价后Pu(Ⅳ)的质量分数大于99.7%,Pu(Ⅵ)的质量分数小于0.3%。甲基肼和二甲基羟胺被完全破坏,电解过程不需加入任何化学试剂。  相似文献   

13.
在Purex流程中,需反复调整Pu的价态,而羟胺及其衍生物二甲基羟胺是Pu(IV)的有效还原剂。本工作中初步研究了Pt催化剂的加入及无催化剂存在时温度、酸度对羟胺和二甲基羟胺两种还原剂的稳定性的影响,为开展Pu的催化氧化调价提供了基础数据。  相似文献   

14.
N,N-二甲基羟胺对Pu(Ⅳ)的还原反萃和相应的计算机模型   总被引:2,自引:1,他引:1  
研究了N,N-二甲基羟胺(DMHAN)的HNO3溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃行为,考察了N,N-二甲基羟胺浓度、HNO3浓度、温度以及两相接触时间对Pu(Ⅳ)反萃率的影响.结果表明:延长相接触时间能显著提高钚的反萃率;增加HNO3浓度、加大DMHAN的用量、升高温度均能加快钚的反萃速率,但当相接触时间超出一定范围时,这些因素都不能显著增加钚的反萃率.编写了DMHAN单级反萃Pu(Ⅳ)的计算机模拟程序,程序计算值与实验值在一定范围内符合良好.  相似文献   

15.
硝酸羟胺还原反萃高浓度钚   总被引:2,自引:0,他引:2  
对硝酸羟胺(HAN)从30%TBP/煤油中还原反萃高浓度Pu(Ⅳ)的影响因素进行了研究。结果表明:延长两相接触时间、降低酸度、升高温度均有利于Pu(Ⅳ)的还原反萃;增大硝酸羟胺浓度虽然也有利于Pu(Ⅳ)的还原反萃,但是当HAN浓度大于0.4mol/L后,反萃率增加不明显;增加肼的浓度也有利于Pu(Ⅳ)的还原反萃,但当肼浓度大于0.2mol/L后,Pu(Ⅳ)的反萃率随肼浓度增加而降低;溶液中硝酸根浓度对Pu(Ⅳ)反萃率的影响明显;随着钚浓度增加,反萃率降低。钚在水相和有机相的分配对HAN还原反萃高浓度钚有显著影响。  相似文献   

16.
采用磷酸三丁酯(TBP)溶剂萃取法对从辐照镎靶溶解液中提取分离钚的可行性进行了研究。从料液制备、流程设计两个方面研究了Pu(Ⅳ)-Np(Ⅳ)组合作为萃取价态组合的可能性。研究了1,1-二甲基肼(UDMH)还原-亚硝酸钠氧化两步法将镎、钚控制在Pu(Ⅳ)-Np(Ⅳ)的方法。结果表明,99.9%以上Pu(Ⅳ)-99.5%以上Np(Ⅳ)在4 h内能够保持稳定。基于此,设计了从辐照镎靶溶解液中提取分离钚的萃取流程,并用串级实验进行了验证:1A中镎的回收率为99.5%;1B中镎的反萃率为0.8%,钚的反萃率为99.9%;1C中镎的反萃率为99.5%。结果表明,采用Np(Ⅳ)-Pu(Ⅳ)的价态组合进料,基本可实现镎钚的分离,但料液中Np(Ⅳ)-Pu(Ⅳ)价态的长时间稳定性及TBP对Np(Ⅳ)萃取能力弱等问题将影响该工艺的实际应用。  相似文献   

17.
无盐试剂甲基肼(MMH)替代肼作为支持还原剂,在后处理工艺流程中具有良好的应用前景,甲基肼浓度的测定是开展其应用研究的前提。MMH主要的分析方法有酸碱容量分析方法、氧化还原容量分析方法和对二甲氨基苯甲醛分光光度法等。由于后处理工艺流程中的料液体系复杂,甲酸、二甲基羟胺、羟胺、亚硝酸、甲醛等的存在会对上述分析方法产生不同程度的干扰。离子色谱法能将甲基肼与其它组分分离,并通过检测器进行定量分析。本工作利用离子色谱法对甲基肼进行测定研究,获得了满意结果。  相似文献   

18.
采用紫外可见光谱和气质联用(GC-MS)法研究了二甲基羟胺-甲基肼(DMHAN-MMH)溶液中MMH次级反应中甲醛甲腙的产生过程和性能,并研究了甲醛甲腙对30%TBP-正十二烷中Pu(Ⅳ)的反萃影响。研究表明:久置的DMHAN-MMH硝酸溶液变黄的主要原因是部分甲基肼被空气中的氧气氧化生成甲醛,生成的甲醛再与MMH缩合生成了甲醛甲腙;低温、密闭和避光可以减少DMHAN-MMH硝酸溶液中甲醛甲腙的生成。室温下,低含量(10~(-3) mol/L)的甲醛甲腙对于30%TBP-正十二烷中常量Pu(Ⅳ)的反萃率无明显影响,但对低浓度Pu(Ⅳ)(0.5g/L)的反萃率具有影响,且钚浓度越低其影响越显著。  相似文献   

19.
在Purex流程中,一定量的HNO2进入1B槽不可避免。HNO2能快速氧化Pu(Ⅲ)到Pu(Ⅳ)。在U/Pu分离段,必须清除体系中的HNO2,以稳定Pu(Ⅲ)。羟胺类、醛类、羟基脲等与HN02的反应已有多篇文献报道。短链羟基肟酸作为一类新型无盐试剂,其性质以及在后处理中的应用研究已取得了一些成果,而乙异羟肟酸与HNO2的反应动力学方面的研究尚未见文献报道。  相似文献   

20.
提出了一种从PUREX流程还原性介质(以1BP料液为例)中分析测量99Tc的方法,分析过程包括钚的萃取分离、锝的氧化、定量萃取及液闪法测量。首先将样品中钚调为+4价,用1-苯基-3-甲基-4-苯甲酰基吡唑酮-5(PMBP)将钚快速萃取分离;然后用重铬酸钾在50 ℃条件下将锝氧化为+7价,并将样品调为碱性后,用2,4,6-三甲基吡啶在碱性介质中定量萃取,用液闪法进行有机相中Tc浓度的测量。采用该方法,可在20 min内完成PUREX流程还原介质中锝的分析,相对标准偏差为0.6%(n=3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号