首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: We have previously reported the finding of an acute increment in the susceptibility of low-density lipoprotein (LDL) to oxidation and in the proportion of electronegative LDL [LDL(-)] after intense exercise. We have now studied the effect of oral supplementation with 1 g ascorbic acid, immediately before a 4-h athletic race, on the susceptibility of LDL to oxidation, the proportion of LDL(-), and the alpha-tocopherol and lipid peroxides content in LDL, in order to inhibit such deleterious changes, and to confirm the oxidative nature of modifications of LDL induced by exercise. METHODS: We studied seven highly trained runners who received a supplement of 1 g ascorbic acid and a control group of seven who did not receive the supplement. The susceptibility of LDL to oxidation was assessed by measurement of conjugated dienes after CuSO4-induced oxidation, the proportion of LDL(-) was determined by anion exchange chromatography, alpha-tocopherol was quantified by reverse-phase high performance liquid chromatography, and lipid peroxides were measured by the thiobarbituric acid-reactive substances (TBARS) method. RESULTS: After exercise, in the control group there was an increase in both the susceptibility of LDL to oxidation (change in lag phase from 51.4 +/- 4.7 min to 47.0 +/- 4.6 min, P < 0.05) and the proportion of LDL(-) (from 11.1 +/- 1.4% to 13.0 +/- 2.2%, P < 0.05), but these did not occur in the ascorbic acid group (change in lag phase from 49.7 +/- 2.3 min to 50.4 +/- 4.2 min, and in LDL(-) from 9.7 +/- 1.7% to 10.1 +/- 1.7%). No significant changes in the absolute amount of LDL alpha-tocopherol were observed after exercise (ascorbic acid group: 6.65 +/- 0.94 mol/mol apoB before the race, 7.13 +/- 0.88 mol/mol apoB after the race; control group: 7.34 +/-0.69 mol/mol apoB before the race, 7.06 +/- 0.69 mol/mol apoB after the race), but significant differences were found when increments or decrements of alpha-tocopherol were tested (alpha-tocopherol increased 9.9 +/- 11.5% in the ascorbic acid group, and decreased 0.6 +/- 7.3% in the control group; P < 0.018). TBARS did not change after exercise. CONCLUSIONS: We conclude that 1 g ascorbic acid inhibits the increase in LDL susceptibility to oxidation after exercise, preventing this acute pro-atherogenic effect. In addition, the observation that LDL(-) enhancement is prevented by ascorbic acid supports the hypothesis that at least some of the circulating LDL(-) originates from oxidative processes.  相似文献   

2.
The goal of this investigation was to determine whether participation in an atherosclerosis treatment program would reduce the oxidative susceptibility of LDL from patients with coronary artery disease. The treatment program included intensive exercise therapy, stress management, and consumption of a diet containing 10% fat. The size and antioxidant and lipid contents of LDL particles from 25 patients were analyzed at baseline and after 3 mo of therapy. The susceptibility of LDL to copper-mediated oxidation was measured by a conjugated diene assay and headspace gas chromatography (HSGC). Atherosclerosis treatment significantly reduced plasma total cholesterol and apolipoprotein B concentrations and the molar ratio of LDL cholesterol ester to apolipoprotein B (P < 0.01). The LDL content of alpha-tocopherol and beta-carotene was increased (27% and 17%, respectively, P < 0.04) and the molar ratio of LDL cholesterol ester the sum of LDL alpha-tocopherol and LDL beta-carotene decreased from 159 at baseline to 122 at 3 mo (P < 0.01). The lag phase of LDL conjugated diene formation increased 24%, whereas the maximum rate of oxidation slowed 29% (P < 0.01). As assessed by HSGC, copper-catalyzed formation of volatile lipid oxidation products was reduced 15% (P < 0.007); the reduction in volatiles was correlated with an increase in the alpha-tocopherol content of LDL (r=-0.48, P < 0.01). The principal determinants of reduced LDL oxidative susceptibility were the particle contents of alpha-tocopherol and beta-carotene. To our knowledge, this is the first report to document a reduction in LDL oxidation in coronary artery disease patients undergoing atherosclerosis-reversal therapy.  相似文献   

3.
Platelet-activating factor acetylhydrolase (PAF-AH) is transported by lipoproteins in plasma and is thought to possess both anti-inflammatory and anti-oxidative activity. It has been reported that PAF-AH is recovered primarily in small, dense LDL and HDL following ultracentrifugal separation of lipoproteins. In the present studies, we aimed to further define the distribution of PAF-AH among lipoprotein fractions and subfractions, and to determine whether these distributions are affected by the lipoprotein isolation strategy (FPLC versus sequential ultracentrifugation) and LDL particle distribution profile. When lipoproteins were isolated by FPLC, the bulk (approximately 85%) of plasma PAF-AH activity was recovered within LDL-containing fractions, whereas with ultracentrifugation, there was a redistribution to HDL (which contained approximately 18% of the activity) and the d>1.21 g/ml fraction (which contained approximately 32%). Notably, re-ultracentrifugation of isolated LDL did not result in any further movement of PAF-AH to higher densities, suggesting the presence of dissociable and nondissociable forms of the enzyme on LDL. Differences were noted in the distribution of PAF-AH activity among LDL subfractions from subjects exhibiting the pattern A (primarily large, buoyant LDL) versus pattern B (primarily small, dense LDL) phenotype. In the latter group, there was a relative depletion of PAF-AH activity in subfractions in the intermediate to dense range (d=1.039-1.047 g/ml) with a corresponding increase in enzyme activity recovered within the d>1.21 g/ml ultracentrifugal fraction. Thus, there appears to be a greater proportion of the dissociable form of PAF-AH in pattern B subjects. In both populations, most of the nondissociable activity was recovered in a minor small, dense LDL subfraction. Based on conjugated dienes as a measure of lipid peroxidation, variations in PAF-AH activity appeared to contribute to variations in oxidative behavior among ultracentrifugally isolated LDL subfractions. The physiologic relevance of PAF-AH dissociability and the minor PAF-AH-enriched oxidation-resistant LDL subpopulation remains to be determined.  相似文献   

4.
We investigated the influence of dietary flavonoids on alpha-tocopherol status and LDL peroxidation in rats fed diets enriched in either polyunsaturated fatty acids (PUFA) or monounsaturated fatty acids (MUFA). Diets equalized for alpha-tocopherol concentrations were or were not supplemented with 8 g/kg diet of flavonoids (quercetin + catechin, 2:1). After 4 wk of feeding, plasma lipid concentrations were lower in rats fed PUFA than in those fed MUFA with a significant correlation between plasma alpha-tocopherol and cholesterol concentrations, r = 0.94, P < 0. 0001). Dietary lipids influenced the fatty acid composition of VLDL + LDL more than that of HDL or microsomes. The resistance of VLDL + LDL to copper-induced oxidation was higher in rats fed MUFA than in those fed PUFA as assessed by the lower production of conjugated dienes and thiobarbituric acid reactive substances (TBARS) and by the >100% longer lag time for dienes production. (P < 0.0001). Dietary flavonoids significantly reduced by 22% the amounts of dienes produced during 12 h of oxidation in rats fed diets rich in PUFA and lengthened lag time 43% in those fed MUFA. Microsomes of rats fed MUFA produced approximately 50% less TBARS than those of rats fed PUFA (P < 0.0001) and they contained more alpha-tocopherol in rats fed MUFA than in those fed PUFA with higher values (P < 0. 0001) in both groups supplemented with flavonoids (P < 0.0001). Our findings suggest that the intake of dietary flavonoids is beneficial not only when diets are rich in PUFA but also when they are rich in MUFA. It seems likely that these substances contribute to the antioxidant defense and reduce the consumption of alpha-tocopherol in both lipoproteins and membranes.  相似文献   

5.
The effects of lipid peroxidation and the antioxidant vitamin E contained in LDL isolated from control plasma (LDL--) and from plasma preincubated with 0.5 mmol/ml alpha-tocopherol (LDL+) on the proliferation of estrogen-receptor positive (ER+ : ZR-75, T-47-D, MCF-7) and negative (ER--: HBL-100, MDA-MB-231) human breast cancer cells were studied. Human skin fibroblasts served as controls. Incubation of plasma with 0.5 mmol/ml alpha-tocopherol resulted in a 3-fold increase of its content and a significant reduction in lipid hydroperoxides and conjugated dienes in LDL. Incubation of fibroblasts or ER+ tumor cells with LDL- or LDL+ had an effect on neither cell proliferation nor on the cellular levels of peroxidation products as compared to control incubations in the absence of LDL. In ER- cells, however, LDL+ stimulated the proliferation, whereas LDL- yielded a cytotoxic effect. Moreover, LDL- supplementation resulted in an increase in the content of hydroperoxides and conjugated dienes. LDL+ supplemented cells exhibited hydroperoxide levels in these tumor cells comparable to the basal levels measured in the absence of LDL. Our data suggested that peroxidation products in LDL are cytotoxic to estrogen-receptor negative breast tumor cells and vitamin E counteracts this effect.  相似文献   

6.
The effect of beta-carotene on the susceptibility of low density lipoprotein (LDL) to oxidative modification was investigated in a double-blind, randomized placebo-controlled study. Hypercholesterolaemic, postmenopausal women were given 30 mg beta-carotene per day (n = 15 subjects) or placebo capsules (n = 15 subjects) for 10 weeks. They were instructed to follow the American Heart Association Step One diet. LDL, isolated before and after treatment was subjected to copper-catalysed lipid peroxidation. There were no significant differences between LDL from the beta-carotene and placebo groups, as assessed by measuring the lag time for formation of conjugated dienes; the rate of formation and the amount of conjugated dienes formed; the amount of lipid peroxides generated; and the relative electrophoretic mobility, at baseline and after treatment. Dietary records showed that the subjects were consuming similar amounts and types of fat. No significant differences were found in the lipid composition and fatty acid pattern of LDL from the two groups. In conclusion, the results indicated that supplementation with beta-carotene in non-smoking, hypercholesterolaemic, postmenopausal women had no protective effect on the susceptibility of LDL to copper-catalysed modification in vitro.  相似文献   

7.
Much data have accrued in support of the concept that oxidation of LDL is a key early step in atherogenesis. The most consistent data with respect to micronutrient antioxidants and atherosclerosis appear to relate to alpha-tocopherol (AT), the predominant lipid-soluble antioxidant in LDL. There are scant data on the direct comparison of RRR-AT and all-racemic (rac)-AT on LDL oxidizability. Hence, the aim of the present study was to examine the relative effects of RRR-AT and all-rac-AT on plasma antioxidant levels and LDL oxidation in healthy persons in a dose-response study. The effect of RRR-AT and all-rac-AT at doses of 100, 200, 400, and 800 IU/d on plasma and LDL AT levels and LDL oxidation was tested in a randomized, placebo-controlled study of 79 healthy subjects. Copper-catalyzed oxidation of LDL was monitored by measuring the formation of conjugated dienes and lipid peroxides over an 8-hour time course at baseline and again after 8 weeks. Plasma AT, lipid-standardized AT, and LDL AT levels rose in a dose-dependent fashion in both the RRR-AT and all-rac-AT groups compared with baseline. There were no significant differences in plasma, lipid-standardized, and LDL AT levels between RRR-AT and all-rac-AT supplementation at any dose comparison. The lag phases of oxidation were significantly prolonged with doses > or = 400 IU/d of RRR-AT and all-rac-AT, as measured by conjugated-dienes assay and at 400 IU/d of RRR-AT and 800 IU/d of both forms of AT by lipid peroxide assay. Again, there were no significant differences in the lag phase of oxidation at each dose for RRR-AT when compared with all-rac-AT. Also, there were no significant differences in LDL oxidation after in vitro enrichment of LDL with RRR-AT and all-rac-AT. Thus, supplementation with either RRR-AT or all-rac-AT resulted in similar increases in plasma and LDL AT levels at equivalent IU doses, and the degree of protection against copper-catalyzed LDL oxidation was only evident at doses > or = 400 IU/d for both forms.  相似文献   

8.
Supplementation with high doses of alpha-tocopherol has increased the oxidation resistance of LDL in many clinical trials. There have been only a few placebo-controlled trials in healthy persons of alpha-tocopherol doses usually contained in dietary supplements. We carried out a single-blind, placebo-controlled, randomized trial to examine the effect of 200 mg RRR-alpha-tocopheryl acetate/d on the oxidation resistance of atherogenic lipoproteins (VLDL+LDL including intermediate-density lipoproteins) in 40 smoking men. VLDL+LDL oxidation resistance was assessed as conjugated dienes after copper induction and hemin degradation after hydrogen peroxide induction. Also, the LDL total peroxyl-radical trapping antioxidant parameter (LDL TRAP) and plasma malondialdehyde were measured at baseline and after 2 mo of supplementation. Plasma RRR-alpha-tocopherol concentrations were measured at 2-h intervals for 12 h at baseline and after 2 mo of supplementation. Compared with placebo, 200-mg RRR-alpha-tocopheryl acetate supplementation elevated plasma and VLDL+LDL alpha-tocopherol concentrations, LDL TRAP, and oxidation resistance of VLDL+LDL. Plasma alpha-tocopherol increased by 88% (P < 0.0001), VLDL+LDL alpha-tocopherol increased by 90% (P < 0.0001), and LDL TRAP by 58% (P < 0.0001). The time to the start of oxidation (lag time) was prolonged by 34% when assessed with a copper-induced method and by 109% when assessed with a hemin + hydrogen peroxide-induced method; the time to maximal oxidation was prolonged by 21% (copper-induced method) in the vitamin E-supplemented group. Changes in plasma alpha-tocopherol, lipid-standardized alpha-tocopherol, and VLDL+LDL alpha-tocopherol correlated significantly with changes in LDL TRAP, lag time, and time to maximal oxidation. Differences in changes between groups in the area under the curve for plasma alpha-tocopherol were significant (P < 0.009). Our results suggest that 200 mg oral RRR-alpha-tocopheryl acetate/d had a clear effect on the in vitro oxidation of VLDL+LDL in smoking men.  相似文献   

9.
The presence of conventional risk factors cannot sufficiently account for the excess risk of atherosclerosis in patients with non-insulin-dependent diabetes mellitus (NIDDM). Oxidative modification of LDL has been implicated in the pathogenesis of coronary atherosclerosis. Thirty-five patients with NIDDM, 20 nondiabetic, hypertriglyceridemic subjects (HTG-control), and 21 diabetic, normotriglyceridemic subjects (NTG-control) were enrolled in this study. Oxidative susceptibility of LDL was determined by monitoring formation of conjugated dienes. Mean lag time of LDL oxidation and vitamin E/lipid peroxide of LDL was lower in patients with NIDDM (43.2 +/- 3.9 minutes and 1.6 +/- 1.3) than in HTG-control (48.8 +/- 3.2 minutes and 2.3 +/- 1.2, respectively) and NTG-control subjects (54.2 +/- 6.1 minutes and 3.0 +/- 1.8, respectively). Mean LDL particle size in patients with NIDDM and HTG-control subjects (24.4 +/- 0.9 and 24.7 +/- 0.7 nm, respectively) was smaller than in NTG-control subjects (25.9 +/- 1.0 nm). Multiple stepwise regression analyses ascertained that the vitamin. E/lipid peroxide of LDL is a major determinant of LDL oxidation lag time. These results suggest that LDL in patients with NIDDM is more susceptible to oxidative modification primarily because of a reduced level of vitamin E/lipid peroxide of LDL. The enhanced susceptibility of LDL to oxidation may be a pivotal factor underlying the increased incidence of vascular disease in patients with NIDDM.  相似文献   

10.
The antioxidant effect of melatonin on LDL oxidation was studied in vitro using either a thermolabile initiator or copper ions to induce lipid peroxidation. Loading of LDL with melatonin showed only weak protection against oxidative damage as compared to alpha-tocopherol. In the presence of high concentrations of melatonin (1000 mol/mol LDL) in the medium a clear protective effect was found during lag- and propagation phase, albeit weaker than after loading with alpha-tocopherol. It is concluded that melatonin is not incorporated into LDL in sufficient concentrations to prevent lipid peroxidation effectively. When melatonin is present in the incubation medium during oxidation, a partitioning equilibrium between aqueous and lipid phase is established. Only under these conditions can melatonin act as a chain breaking antioxidant. The concentrations required, however, are far beyond those found in human plasma. Therefore, the data in this study do not support a direct physiological relevance of melatonin as an antioxidant in lipid peroxidation processes.  相似文献   

11.
A phospholipid subgroup with potential antioxidant properties, the plasmalogen (1-alkenyl, 2-acyl-) fraction, was determined to constitute about 4.5% of total LDL phospholipids. In vitro oxidation of LDL by 2,2'-azobis-(2-amidinopropane hydrochloride) (AAPH, 0.5-10mM) or 5 microM copper induced a selective reduction of plasmalogen subgroups in phosphatidylcholine and phosphatidylethanolamine by 15%-35% within 30 min. Under the same experimental conditions alpha tocopherol (vitamin E) levels were lowered by 5%-40%, indicating a comparable sensitivity of plasmalogen phospholipids and alpha tocopherol towards oxidative attack by AAPH and copper. In vitro enrichment of LDL with 1-alkenyl, 2-lyso-phosphatidylcholine increased the lag phase of formation of conjugated double bonds induced by oxidation of the particles with copper. Incorporation of the lyso plasmalogen did not affect the maximal contents of conjugated dienes in copper oxidized LDL. Due to their relatively high concentration in LDL, their pronounced sensitivity towards oxidation and their capacity to increase the oxidative resistance of the particles, plasmalogen phospholipids may play a significant role in the defense of LDL particles against oxidative stress.  相似文献   

12.
The aim of our study was to determine whether the minor polar components of virgin olive oil could have favorable effects (1) on fasting and postprandial lipid profile and (2) on low-density lipoprotein (LDL) composition and susceptibility to oxidation in vitro. Ten normolipidic subjects were included in a crossover study (two diet periods of 3 weeks) and received either virgin olive oil (OO diet) or oleic acid rich sunflower oil. An oral fat load was performed at the end of each period. The plasma lipid levels were not significantly different after both diets in the fasting and postprandial states. A few minor variations of the LDL composition were observed only in the postprandial lipemia, and they were different after both diets. The LDL oxidation susceptibility was evaluated by the formation of conjugated dienes. With LDL isolated in the fasting state, the diene production decreased (p = 0.0573) only after the OO diet. The dienes determined at time 0 and the maximal dienes obtained during the oxidation reaction decreased (p = 0.0145 and p = 0.0184, respectively) only after the OO fat load. Nevertheless, the diene production decrease was not significant (p = 0.0848). Our results suggest a mild effect of minor components of virgin olive oil related to a decrease of LDL susceptibility to oxidation; further analyses are necessary to give clear conclusions about their role.  相似文献   

13.
The oxidation of low density lipoprotein (LDL) has been suggested as a key event in atherogenesis. Paradoxically, exercise, which imposes an oxidative stress, is an important deterrent of cardiovascular disease. In study 1 the oxidizability of LDL was enhanced in exercisers compared with sedentary controls. The lag time of isolated LDL subjected to copper-induced in vitro oxidation was significantly shortened in the exercisers compared with sedentary subjects. This increased sensitivity was not due to a decreased presence of vitamin E. Instead, these findings suggested that the LDL of exercisers may contain increased amounts of preformed lipid peroxides, which account for the increased oxidizability. In study 2, a group x sex ANOVA revealed that male exercisers had a significantly longer mean lag time than male sedentary subjects and that females had similar mean lag times regardless of exercise group. This remained the case when statistical adjustment was made for age, body mass index, blood lipid levels, LDL, and plasma alpha-tocopherol levels. Study 1 exercisers had been in training for a shorter time (< 1 year) than study 2 exercisers (> 2 years). These findings suggest that truly "chronic" exercise (aerobic intensity over several months) decreases the susceptibility of a male exerciser's LDL to undergo oxidation. Conversely, regular aerobic stress during an overall shorter time span creates a more oxidative environment in the body, thus increasing the susceptibility of LDL to undergo oxidation. The oxidative stress of aerobic exercise does not appear to adversely affect the oxidizability of LDL in women.  相似文献   

14.
Macrovascular disease represents a major cause of morbidity and mortality in patients with diabetes mellitus. Low-density lipoprotein (LDL) is involved in the pathogenesis of atherosclerotic lesions, through modifying processes such as oxidation. We examined the in vitro susceptibility to oxidation and the oxidizability of LDL isolated from the plasma of Type 1 and Type 2 diabetic patients. Two groups of diabetic patients (20 Type 1, 20 Type 2) were compared with sex- and age-matched non-diabetic control groups. In vitro oxidation of the purified LDL preparations was assessed by determination of the kinetics for the formation of conjugated dienes (lag phase duration, maximal rate and maximal dienes concentration) and by measurement of thiobarbituric acid-reacting substances (TBARS) in the presence of copper ions. LDL from both Type 1 and Type 2 diabetic patients exhibited a shorter lag phase duration for conjugated dienes formation (94 +/- 14 vs. 108 +/- 20 and 97 +/- 26 vs. 112 +/- 18 min for Type 1 and Type 2 diabetic groups vs. respective control groups, P < 0.05). We also observed an increase in maximal rate of conjugated dienes formation (2.21 +/- 0.55 vs. 1.52 +/- 0.31 and 2.02 +/- 0.55 vs. 1.52 +/- 0.31 nmol/mg LDL/min, P < 0.01) and of maximal production of TBARS (77.9 +/- 11.8 vs. 65.5 +/- 10.4 and 76.7 +/- 9.9 vs. 65.3 +/- 9.4 nmol/mg LDL protein, P < 0.05) in diabetic groups. Our results demonstrate both a higher susceptibility to oxidation and a higher oxidizability of LDL from diabetic patients, as much for Type 1 as Type 2 diabetic subjects with or without pre-existent vascular complications. This enhanced propensity of LDL oxidation in patients with diabetes mellitus could at least partly be attributable to quantitative and qualitative alterations in the chemical composition of LDL and to the glycoxidation process occurring on these lipoproteins.  相似文献   

15.
According to the Adult Treatment Panel of the National Cholesterol Education Program, age is a major risk factor for heart disease. To assess the relation between age and LDL oxidizability, we studied copper-mediated LDL oxidation in 13 healthy elderly subjects (> 59 years) and 13 sex-matched healthy young controls (< 30 years). Total and LDL-cholesterol concentrations were increased in elderly subjects. The time course of copper-mediated LDL oxidation showed no significant differences between the two groups as assessed by formation of conjugated dienes, lipid peroxides, and apolipoprotein B fluorescence. Kinetics of LDL oxidation as quantified by lag time, oxidation rate, and maximal oxidation were not significantly different between the elderly and young groups. Although the concentrations of 16:0, 18:0, 18:1, 18:3, and 20:4 and total polyunsaturated fatty acids were significantly higher in the elderly group, LDL fatty acid concentrations were similar in both groups. Lipid-standardized alpha-tocopherol, beta-carotene, and ascorbate concentrations were not significantly different between the two groups. The findings of the present study suggest that in the healthy elderly, LDL oxidation may not be a crucial mediator for atherogenesis.  相似文献   

16.
OBJECTIVE: Insulin resistance is associated with a predominance of small, atherogenic LDL particles that are more prone to oxidative modification. Treatment with the insulin-sensitizer troglitazone may improve LDL composition and resistance to oxidation. RESEARCH DESIGN AND METHODS: In a randomized double-blind crossover design, 15 obese subjects were treated with either 400 mg troglitazone daily or placebo for 8 weeks. Insulin sensitivity (clamp), (apo)lipoproteins, LDL subclass pattern, plasma TBARS, and ex vivo LDL oxidation were determined. RESULTS: Troglitazone treatment improved insulin sensitivity. LDL cholesterol increased from 2.58 +/- 0.18 to 2.77 +/- 0.20 mmol/l (P = 0.03) because of an increase in large (buoyant) LDL1 (from 0.45 +/- 0.04 to 0.62 +/- 0.09 mmol/l, P = 0.008). Because small (dense) LDL3 decreased, LDL1:LDL3 ratio increased (P = 0.02). Plasma TBARS concentration declined significantly, and the lag time of ex vivo LDL oxidation showed a small but significant increase. CONCLUSIONS: In obese subjects, treatment with troglitazone improves insulin sensitivity, increases the ratio of large buoyant to small dense LDL, and appears to enhance the resistance of the LDL particle to oxidation. These qualitative changes in lipoproteins may have a beneficial effect on cardiovascular risk profile and compensate for a small increase in LDL cholesterol.  相似文献   

17.
Tocotrienols from palm oil showed significant ability to inhibit oxidative damage induced by ascorbate-Fe2+ and photosensitization, involving different mechanisms, in rat liver microsomes. The tocotrienol-rich fraction from palm oil (TRF), being tried as a more economical and efficient substitute for alpha-tocopherol, showed time- and concentration-dependent inhibition of protein oxidation as well as lipid peroxidation. It was more effective against protein oxidation. The extent of inhibition by TRF varied with different peroxidation products such as conjugated dienes, lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Among the constituents of TRF, gamma-tocotrienol was the most effective followed by its alpha- and delta-isomers. In general, at a low concentration of 5 microM, TRF was able to prevent oxidative damage to significant extent (37% inhibition of protein oxidation and 27-30% of lipid peroxidation at 1 h of incubation). The protective ability of TRF (30.1% at 5 microM with TBARS formation) was significantly higher than that of the dominant form of vitamin E, alpha-tocopherol (16.5% under same conditions). Hence our studies indicate that this fraction from palm oil can be considered as an effective natural antioxidant supplement capable of protecting cellular membranes against oxidative damage.  相似文献   

18.
The effects of marine omega-3 polyunsaturated fatty acids (FAs) and antioxidants on the oxidative modification of LDL were studied in a randomized, double-blind, placebo-controlled trial. Male smokers (n = 41) with combined hyperlipidemia were allocated to one of four groups receiving supplementation with omega-3 FAs (5 g eicosapentaenoic acid and docosahexaenoic acid per day), antioxidants (75 mg vitamin E, 150 mg vitamin C, 15 mg beta-carotene, and 30 mg coenzyme Q10 per day), both omega-3 FAs and antioxidants, or control oils. LDL and human mononuclear cells were isolated from the patients at baseline and after 6 weeks of supplementation. LDL was subjected to cell-mediated oxidation by the patients' own mononuclear cells, as well as to Cu(2+)-catalyzed and 2,2'-azobis-(2-amidinopropane hydrochloride) (AAPH)-initiated oxidation. Extent of LDL modification was measured as lag time, the formation rate of conjugated dienes (CDs), the maximum amount of CDs formed, formation of lipid peroxides, and the relative electrophoretic mobility of LDL on agarose gels. Dietary supplementation with omega-3 FAs increased the concentration of total omega-3 FAs in LDL and reduced the concentration of vitamin E in serum. The omega-3 FA-enriched LDL particles were not more susceptible to Cu(2+)-catalyzed, AAPH-initiated, or autologous cell-mediated oxidation than control LDL. In fact, enrichment with omega-3 FAs significantly reduced the formation rate of CDs when LDL was subjected to AAPH-induced oxidation. Supplementation with moderate amounts of antioxidants significantly increased the concentration of vitamin E in serum and increased the resistance of LDL to undergo Cu(2+)-catalyzed oxidation, measured as increased lag time, reduced formation of lipid peroxides, and reduced relative electrophoretic mobility compared with control LDL. Supplementation with omega-3 FAs/antioxidants showed oxidizability of LDL similar to that of control LDL and omega-3 FA-enriched LDL. In conclusion, omega-3 FAs neither rendered the LDL particles more susceptible to undergo in vitro oxidation nor influenced mononuclear cells' ability to oxidize autologous LDL, whereas moderate amounts of antioxidants protected LDL against oxidative modification.  相似文献   

19.
The antioxidant properties of butein, isolated from Dalbergia odorifera T. Chen, were investigated in this study. Butein inhibited iron-induced lipid peroxidation in rat brain homogenate in a concentration-dependent manner with an IC50, 3.3+/-0.4 microM. It was as potent as alpha-tocopherol in reducing the stable free radical diphenyl-2-picrylhydrazyl (DPPH) with an IC0.200, 9.2+/-1.8 microM. It also inhibited the activity of xanthine oxidase with an IC50, 5.9+/-0.3 microM. Besides, butein scavenged the peroxyl radical derived from 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) in aqueous phase, but not that from 2,2-azobis(2, 4-dimethylvaleronitrile) (AMVN) in hexane. Furthermore, butein inhibited copper-catalyzed oxidation of human low-density lipoprotein (LDL), as measured by conjugated dienes and thiobarbituric acid-reactive substance (TBARS) formations, and electrophoretic mobility in a concentration-dependent manner. Spectral analysis revealed that butein was a chelator of ferrous and copper ions. It is proposed that butein serves as a powerful antioxidant against lipid and LDL peroxidation by its versatile free radical scavenging actions and metal ion chelation.  相似文献   

20.
A randomized, double-masked, placebo-controlled cross-over trial was carried out to evaluate whether ubiquinone supplementation (180 mg daily) corrects impaired defence against initiation of oxidation of low density lipoprotein (LDL) related to effective (60 mg daily) lovastatin treatment. Nineteen men with coronary heart disease and hypercholesterolemia received lovastatin with or without ubiquinone during 6-week periods after wash-out. The depletion times for LDL ubiquinol and reduced alpha-tocopherol were determined during oxidation induced by 2,2-azobis(2,4-dimethylvaleronitrile) (AMVN). Copper-mediated oxidation of LDL isolated by rapid density-gradient ultracentrifugation was used to measure the lag time to the propagation phase of conjugated diene formation. Compared to mere lovastatin therapy, ubiquinone supplementation lead to a 4.4-fold concentration of LDL ubiquinol (P < 0.0001). In spite of the 49% lengthening in depletion time (P < 0.0001) of LDL ubiquinol, the lag time in copper-mediated oxidation increased only by 5% (P = 0.02). Ubiquinone loading had no statistically significant effect on LDL alpha-tocopherol redox kinetics during high radical flux ex vivo. The faster depletion of LDL ubiquinol and shortened lag time in conjugated diene formation during high-dose lovastatin therapy may, at least partially, be restored with ubiquinone supplementation. However, the observed improvement in LDL antioxidative capacity was scarce, and the clinical relevance of ubiquinone supplementation during statin therapy remains open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号