首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为研究复杂水–力路径下非饱和砂质黄土的增湿变形特性,采用GDS非饱和三轴仪,对非饱和砂质黄土开展偏应力作用下固结–加载–增湿–加载、固结–卸载–增湿–卸载2种复杂水–力路径的单线法三轴增湿试验,全面分析水–力路径和应力比对非饱和砂质黄土增湿变形特性的影响。试验结果表明:(1)轴向应变与增湿剪应变均随应力比的增加而减小;(2)应力比为0.25时,试样未达到饱和便发生剪胀破坏;经历加载路径试样比经历卸载路径试样的增湿剪应变、孔隙比发展更快,率先达到破坏;(3)应力比为0.5和0.75时增湿变形特性基本一致,湿化体应变、增湿剪应变均随湿化参数的增加先增加后趋于稳定,孔隙比随着湿化参数的增加先减小后趋于稳定,经历加载路径试样的最大湿化体应变、增湿剪应变与增湿前初始孔隙比均大于经历卸载路径的试样。  相似文献   

2.
为了研究黑云母花岗岩热动力学性能,对不同实时温度(20℃,100℃,200℃)下的花岗岩试样力学响应和破坏过程进行了室内试验和数值模拟分析。结果表明:在所研究的温度范围内,20℃时岩样的抗压强度和弹性模量值最大,100℃时最小,且100℃下岩样的破碎程度比20℃和200℃的明显偏大;随着加载速率的提高,应力–应变曲线上的峰值应力和峰值应变增加,岩样内部裂纹演化及破坏程度也随之增大;低加载率时试样周边易萌生裂纹,高加载率下试样内部裂纹在加载初期甚至也可被激活;所提出的Holmquist-Johnson-Cook(HJC)模型参数确定方法是可行的,数值模拟能较好地描述热处理岩样在冲击荷载作用下力学特性;HJC模型与相关失效准则相结合,能逼真地展现岩样动态压缩破裂过程及其形破坏态变化。  相似文献   

3.
 利用一种大理岩试件加工制备含圆形和椭圆形孔洞的板状试样,试样尺寸为60 mm×60 mm×15 mm,使用75 mm杆径的分离式霍普金森压杆(SHPB)进行冲击压缩试验,通过超动态应变仪监测入射杆和透射杆的应变信号,利用高速摄像仪记录试样完整的裂纹萌生、扩展、贯通直至试样破坏的全过程,分析冲击载荷作用下预制孔洞试样的动态抗压强度、破坏模式和裂纹扩展特性。研究发现,孔洞大小、形状和空间位置对岩石的动态抗压强度都有一定影响,孔洞的存在降低了大理岩试样的动态抗压强度。在冲击载荷作用下,预制中心孔洞的大理岩试样在孔洞周边产生平行于轴向加载方向的初始拉伸裂纹和类X型初始剪切裂纹,在试件破坏中起主导作用。圆形孔洞试样中,随着孔径增大,剪切裂纹扩展速度随之增大,而拉伸裂纹扩展速度则减小;椭圆形孔洞的长短轴比、长轴与加载方向的夹角均是影响裂纹扩展速度和动态抗压强度的因素。在30~45 s-1的加载应变率范围内,大理岩孔洞试样的平均裂纹扩展速度为100~450 m/s。  相似文献   

4.
在单轴平面应变压缩条件下,采用FLAC模拟加载速度对具有随机材料缺陷岩样破坏过程的影响。采用编写的FISH函数规定随机缺陷及统计发生破坏的单元数。密实岩石服从莫尔–库仑剪破坏与拉破坏复合的破坏准则,破坏之后呈现应变软化–理想塑性行为。缺陷破坏之后经历理想塑性行为。随着加载速度的提高,强度及其对应的应变提高,峰后应力–变形曲线变得平缓。在加载过程中,每10个时步内破坏单元数–轴向应变曲线中存在破坏单元数有显著增加的3个区段。随着加载速度的提高,该曲线的区段2及3变得开阔,区段2的峰值降低,区段3的峰值提高。在初始加载阶段和缺陷全部破坏之前,加载速度较高时的破坏单元总数–轴向应变曲线比较平缓,这是由于加载速度较高时试样内部的裂隙传播和应力转移不充分,当应变小于一定值时,在应变相同时,破坏单元数较少。破坏单元总数–应变曲线表明,随着加载速度的提高,试样最终遭受到更严重的破坏。  相似文献   

5.
为研究不同冲击速度下层状岩石动态力学特性,采用分离式霍普金森杆压杆装置对千枚岩进行动态冲击试验。研究冲击速度与层理倾角对层状岩石应力–应变曲线、破坏应变及应变率的影响;并从破碎形态、波传播特性、能量吸收等方面对岩石的破坏模式进行分析。结果表明,层状千枚岩试样破裂面类型分为4类,低冲击速度下,试样大多以单一的破裂面形式破坏,高冲击速度下多种破裂类型混合发生。随着冲击速度的增大,破裂类型增多,岩石平均破碎尺寸减小。岩石的动态破坏强度随倾角增加呈现先减小后增大的趋势,高冲击速度下这一趋势更加显著。同一冲击速度下,随倾角增大,应变率先减小后增大,试样破坏应变随倾角变化先增大后减小,表明低冲击速度下,22.5°倾角试样最易破坏,高冲击速度下,45°~67.5°倾角试样破坏最为容易,0°~22.5°倾角试样最难破坏。在低冲击速度下加载方向与层面处于45°~67.5°夹角时破碎效果较好,能量利用率较高;高冲击速度下加载方向与层面处于90°夹角时破碎效果最佳,能量利用率最高。  相似文献   

6.
基于三维数字图像相关技术,采用可视化三轴压缩伺服控制试验系统,开展孔隙水压–应力耦合作用下砂岩应力松弛特性试验研究。结果表明:(1)径向应变场中局部微裂纹损伤发育并相互贯通是引起脆性岩石应力松弛时效失稳破坏的主控因素。(2)松弛应力水平位于岩石微裂纹稳定发育和微裂纹不稳定发育阶段时,孔隙水压的增加,能显著提高岩石的应力松弛量和径向应变变化量,缩短岩石时效破坏寿命。(3)松弛破坏试样应力–时间曲线和径向应变–时间曲线呈“阶梯式”变化趋势,及两者的速率–时间曲线呈现“漏斗形”演化趋势,其实质均反映了岩石应力松弛过程中微裂纹损伤发育扩展和相互贯通。(4)松弛破坏试样破裂面裂纹发育以沿晶裂纹为主,且相互之间汇集、贯通,胶结基质破碎严重,胶结结构丧失,脆性岩石应力松弛时效破坏实质是受裂纹发育扩展所控制。  相似文献   

7.
为研究三维动静加载下不同长径比煤样力学特性及能量耗散规律,利用改进的分离式霍普金森压杆(SHPB)装置,对直径50 mm,长径比分别为0.5,0.6,0.8和1.0的4组圆柱体试样开展三维动静加载试验,从动态应力和动态应变等方面研究不同长径比煤样的力学特性,并对破碎后煤样进行能量分析。研究结果表明:当试样长径比在0.5~1.0范围内时,动态峰值应力和组合峰值应力均随应变率增大呈乘幂函数关系增长,长径比越大,试样的应变率敏感性越强;相同应变率下,动态峰值应力和组合峰值应力随试样长径比增加而增大,且应变率越大,二者长径比效应越显著。试样动态峰值应变和动态最大应变均随应变率增大呈线性关系增长,不同长径比试样动态峰值应变及动态最大应变的应变率敏感性相差不大,相同应变率下动态峰值应变随试样长径比增加而减小,动态最大应变受预加静载及试样允许的最大变形量双重因素影响,随长径比增加表现为先减小再增大。试样长径比越大,煤的破碎耗能密度越小,破碎程度越高,破坏模式由张拉破坏向剪切破坏转变。研究成果有利于探究动静载叠加作用下冲击失稳破坏机制,为冲击地压防治提供理论支持。  相似文献   

8.
采用真三轴试验系统对煤岩组合体开展加卸载实验,探究不同煤厚比例组合体的力学行为响应特征,分析煤厚比例对组合体冲击破坏特征的影响规律。结果表明:(1)随着煤厚比例的增加,试样形成较多的X型共轭剪切裂纹,强度呈现出明显的下降趋势,下降梯度逐渐减小,冲击破坏特征逐渐明显;(2)试样变形主要发生在初始应力加载阶段及垂向应力再加载阶段,最大主应变是试样变形的最主要构成部分;(3)不同煤厚比例试样的全应力–应变曲线特征相似,随着煤厚比例的增加,试样的塑性变形逐渐增加。根据实验结果分析,在开采及地质条件相似情况下,底板冲击趋势随底煤厚度的增加而增加,增加梯度逐渐降低;当底煤厚度增加到一定程度时,底煤厚度的再增加对底板冲击无明显叠加影响。研究成果可为深入认识底板冲击地压发生机制及建设防控技术中试平台并开展工程仿真研究提供参考。  相似文献   

9.
采用真三轴试验系统对煤岩组合体开展加卸载实验,探究不同煤厚比例组合体的力学行为响应特征,分析煤厚比例对组合体冲击破坏特征的影响规律。结果表明:(1)随着煤厚比例的增加,试样形成较多的X型共轭剪切裂纹,强度呈现出明显的下降趋势,下降梯度逐渐减小,冲击破坏特征逐渐明显;(2)试样变形主要发生在初始应力加载阶段及垂向应力再加载阶段,最大主应变是试样变形的最主要构成部分;(3)不同煤厚比例试样的全应力–应变曲线特征相似,随着煤厚比例的增加,试样的塑性变形逐渐增加。根据实验结果分析,在开采及地质条件相似情况下,底板冲击趋势随底煤厚度的增加而增加,增加梯度逐渐降低;当底煤厚度增加到一定程度时,底煤厚度的再增加对底板冲击无明显叠加影响。研究成果可为深入认识底板冲击地压发生机制及建设防控技术中试平台并开展工程仿真研究提供参考。  相似文献   

10.
预压应力脆性岩石动力特性研究,对深部地下工程围岩变形评价有重要实践意义。细观裂纹扩展严重影响预压脆性岩石动态力学行为。基于细观裂纹扩展与应力关系模型、裂纹速率与动态断裂韧度模型、裂纹速率与应变率关系模型及应变率与应变关系模型,提出了一种考虑预压轴向应力及围压的脆性岩石承受动态荷载作用下的宏细观力学模型。其中裂纹速率与应变率关系模型是通过对应变相关的裂纹长度求解时间导数获得。应变率与应变关系模型描述了预压岩石动态荷载导致的应变率随应变演化曲线。研究了不同预压轴向应力及应变率影响下的脆性岩石应力-应变关系曲线,并利用试验结果验证了模型的合理性。讨论了围压、初始裂纹尺寸、初始裂纹角度、及初始裂纹摩擦系数对预压应力岩石的动态应力应变关系、预压裂纹长度、预压轴向应变、及动态峰值强度的影响。主要研究结果:预压应力越小、围压越大、初始裂纹面尺寸越小或初始裂纹摩擦系数越大,则预压轴向应变及裂纹长度越小,且预压岩石动态强度越大。  相似文献   

11.
Effects of microstructures on dynamic compression of Barre granite   总被引:8,自引:0,他引:8  
The distribution and characteristics of microstructures (microcrack and grain) of Barre granite (BG) were investigated, and three orthogonal weak planes associated with the preferred orientations of microcracks were identified. It has been demonstrated that both the fracture toughness and the longitudinal wave speed depend on the direction of these weak planes. In this study, disk samples cut from one BG block are prepared for split Hopkinson pressure bar (SHPB) test. The axial directions of the samples are chosen to be parallel to the preferred direction of microcracks and the samples are grouped and denoted by Y (lowest P-wave velocity), Z (highest P-wave velocity), and X (intermediate P-wave velocity). Pulse-shaper technique is adopted to achieve equilibrium of dynamic stresses on both ends of the sample and constant strain rate during the dynamic loading. For samples within the same orientation group, the maximum stress achieved shows clear strain-rate sensitivity. The effect of microcracks on the dynamic compressive response of BG depends on the strain rate for a fixed loading duration (230 μs). For low strain-rate loading (70 s−1) and high strain-rate loading (130 s−1), the maximum dynamic stress achieved is not sensitive to the microcrack orientation; for intermediate strain rate (100 s−1) loading, the maximum achieved stress for Y-samples is the largest. In addition, three dynamic compressive rock failure modes are identified: quasi-elastic, cracked, and fragmented. The correlation between the failure modes and the shape of the stress–strain curves is discussed.  相似文献   

12.
花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较   总被引:7,自引:4,他引:7  
采用黄铜波形整形器改进后的分离式Hopkinson压杆装置,分别对花岗岩和混凝土试件进行不同应变率(101~103)s-1下的单轴冲击压缩试验,有效地减少传统Hopkinson压杆试验中,岩石类脆性材料在内部应力达到均衡之前过早破坏以及输入波的高频震荡给试验数据带来的波动性。试验结果表明,应变率不仅影响这2种岩石类材料的强度,而且也影响材料的破碎程度和破碎形式,但对材料的初始弹性模量、破坏应变以及能量吸收率影响不大。从花岗岩和混凝土材料的微观结构特征和能量吸收能力等方面,对比分析这2种材料动态性能的共同特点和相互差异,合理地解释试验现象。该方法与结论对其他类型的脆性材料的动态性能研究具有一定的参考价值。  相似文献   

13.
采用分离式霍普金森压杆试验系统对砂岩进行冲击压缩试验,得到了砂岩的动态冲击压缩应力-应变曲线,研究了砂岩在冲击荷载作用下的动态力学响应,分析了砂岩的动态抗压强度、峰值应变及冲击破碎后的粒径分布等随应变率的变化规律。试验结果表明:在冲击荷载作用下,应变率对砂岩的力学行为有很大的影响,随着应变率的升高,砂岩的动态抗压强度及峰值应变均有较大程度的提高,表现出明显的应变率效应;砂岩破坏后的粒径分布呈现渐进性变化,大体分为三种类型,对岩石试件破坏后的粒径和块度分布进行研究能很好的表征试件破坏后的状况。  相似文献   

14.
为研究冲击荷载下运动裂纹遇到介质中倾斜弱面后的动态断裂行为,采用霍普金森杆作为冲击加载装置,利用高速相机记录倾斜弱面介质中运动裂纹的扩展过程,并结合数字图像相关方法对裂纹周围应变场的演化过程、裂纹尖端的开裂应变以及裂纹的扩展速度进行了分析。结果表明,在冲击荷载下,运动裂纹在遇到弱面后易偏向弱面扩展,裂纹偏转后的开裂应变和扩展速度都显著提高。此外,应力加载率对运动裂纹的扩展有显著影响。随着加载率的提高,动态裂纹沿弱面扩展一定距离后将再次进入基质扩展,且运动裂纹沿弱面扩展的偏移距离逐渐减小。在高加载率下,裂纹沿弱面扩展的速度基本保持稳定,但再次穿过弱面后的裂纹数量和长度不断增加。在相同加载率下,弱面的强度越低,裂纹沿弱面扩展的距离越长。  相似文献   

15.
采用改进的SHPB(分离式Hopkinson压杆)技术测试了较高应变率范围内浮法玻璃的动态应力-应变曲线,探讨了其动态力学性能.结果表明:浮法玻璃为弹脆性材料,其动态应力-应变关系呈非线性特征.在较高的应变率范围内,浮法玻璃动态应力-应变关系与应变率相关,其弹性模量随应变率的增大而增大.基于损伤力学的基本理论,并根据SHPB测试结果,拟舍得到了浮法玻璃应变率相关的动态本构方程.  相似文献   

16.
 采用分离式霍布金森压杆(SHPB)试验系统对深井软岩材料进行动态力学性能测试,测试的应力–应变曲线表现出显著的塑性变形特性。基于修正的过应力模型本构方程,根据 的变化量与应变率和应变之间的函数关系,采用量纲一化分析法对修正的过应力模型本构方程进行简化,得到简化的过应力模型本构方程;考虑动载作用下损伤对岩石动载强度的影响,将连续损伤理论和统计强度理论引入到简化的过应力模型本构方程,建立简化的损伤型过应力模型本构方程,使得本构模型方程适用于动态全程应力–应变曲线。采用简化的损伤型过应力模型本构方程对实测曲线进行曲线拟合,实测曲线和拟合曲线两者具有很好的一致性。  相似文献   

17.
 岩石等脆性材料的力学性能与其所受围压的大小密切相关。为了研究地下工程岩石在围压下的冲击压缩特性,采用具主动围压加载的分离式Hopkinson压杆,对岩石进行主动围压下的SHPB冲击压缩试验,得到岩石在不同围压和不同应变率下的轴向应力–应变曲线,并对试验过程中试件的应力均匀性进行分析。研究表明:岩石类脆性材料在围压作用下其抗压强度和韧性大大提高,并且具有向延性特征发展的趋势,显现出较强的围压效应;在同等级围压下,岩石的峰值强度和峰值应变随应变率的变化表现出显著的应变率相关性,动态强度增长因子与应变率的对数呈近似线性关系,动态强度随应变率的增加而近似线性增长。单轴动荷载下,岩石在以拉应力为主,其他应力联合作用下发生破坏,表现出明显的脆性特征;随着围压的增加,岩石试件将发生脆性向延性的转变,破坏形态以压剪破坏为主,同时发生拉应变破坏和卸载破坏。  相似文献   

18.
轻质高强混凝土材料已经广泛运用于各种建筑结构中,然而其冲击作用下的动力性能尚不明确。为了探讨其动力性能,设计制作了一系列圆柱体混凝土试件。首先通过静力加载试验获得了其静力强度,然后,采用155mm大直径分离式霍普金森杆(SHPB)设备,对直径为150mm、长径比为0.5的混凝土试件开展了冲击试验研究。采用紫铜片作为波形整形器,该试验中各气压下冲击速度稳定,SHPB试验结果可靠。混凝土试件的破坏模式以脆性碎裂为主,随着冲击速度的增加,破坏后的碎块由条片状逐渐过渡至粉末状。应变率在40~140s-1时,试件的动态强度随着应变率的增大而增大。当冲击速度增加时,能量吸收密度也随之增加,即材料吸收能量的能力显著提高。根据试验结果,拟合了动态应力-应变曲线,以期供相关研究参考。  相似文献   

19.
利用改进后的直径50 mm的分离式Hopkinson压杆(SHPB)试验装置,对灰岩试件施加不同加载速率的冲击压缩试验,分析了试验中灰岩试件的能量耗散特征;通过基于Weibull分布的动态统计损伤理论并结合试验曲线分析了灰岩的损伤演化规律,并探讨了最大损伤变量与能量耗散密度的关系。研究结果表明:透射、吸收、反射能量受入射能量的影响显著,并且透射能的相关性最显著;能量耗散密度随应变率的增加而显著增加,呈现较好的线性正比关系,能量耗散密度为零时的临界应变率为62.56 s-1;动态抗压强度与应变率呈指数函数关系;灰岩试件的能量吸收率随应变率的提高而显著减小。基于Weibull分布的动态损伤本构模型的计算曲线与试验曲线较为一致,损伤变量D随应变的增加而逐渐增加,在应力应变曲线峰值处,损伤变量D存在一个明显的拐点,损伤在此处开始急剧增大;灰岩的最大损伤变量Dmax与能量耗散密度呈较强的对数函数关系,存在Dmax为零时的临界能量耗散密度值。  相似文献   

20.
煤冲击破坏过程中的近距离瞬变磁场变化特征研究   总被引:1,自引:1,他引:0  
 通过分离式霍普金森杆动载实验装置和ZDKT–1型瞬变磁振测试系统,研究冲击速度为4.174~17.652 m/s条件下的煤冲击破坏过程中动力学特性和瞬变磁场变化特征。分别采用一维应力波理论和希尔伯特–黄变换对煤冲击过程中的应变信号和瞬变磁场变化信号进行分析研究。研究结果表明:(1) 在一定应变率范围内随着应变率的增加,煤材料的动态响应由硬化向软化过渡;(2) 煤动载冲击破坏过程中距离煤样4 cm处的区域内磁场发生明显变化,通过整体经验模式分解(EEMD)法分析发现,其持续时间小于2 s,频率为0~40 Hz;(3) 煤冲击破坏过程中瞬变磁场变化信号曲线表现为直线上升,指数下降,末尾小幅振荡的特征;(4) 煤的冲击破坏过程中瞬变磁场变化信号幅值,随着冲击速度、平均应变率、最大应变率、断裂应力极限值的增大均出现增大趋势,随着破坏应变的增加而减小,但实验数据的离散性较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号