首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study assessed the ability to remove pharmaceuticals and personal care products (PPCPs) of three different full-scale hybrid pond-constructed wetlands and a conventional wastewater treatment plant (WWTP). The four systems were fed with primary-treated urban wastewaters. The three hybrid systems consisted of several different subsystems (ponds, surface flow constructed wetlands and horizontal subsurface flow constructed wetlands) connected in series, and their PPCP degradation efficiency was monitored. In addition, the enantiomeric behaviour of ibuprofen was studied in all the subsystems. The hybrid systems were at least as efficient in PPCP removal as the WWTP, removal efficiencies mainly exceeding 70%. Moreover, enantiomeric analysis indicates that ibuprofen removal followed a predominantly aerobic and microbiological pathway. Constructed wetlands and ponds are therefore successful technologies for removing PPCPs from wastewater and the most significant removal process in these systems is biologically mediated.  相似文献   

2.
Stevik TK  Aa K  Ausland G  Hanssen JF 《Water research》2004,38(6):1355-1367
Properly designed biological filters or infiltration systems have the capacity to significantly reduce effluent concentrations of pathogenic microorganisms in wastewater. The retention and elimination of microbial cells in biological wastewater filter systems is influenced by several factors. In this review, these factors are discussed. Immobilization of microbial cells moving through a porous media is influenced by mechanisms such as physical straining as well as adsorption to porous media. The grain size of porous media and bacterial cell size are important factors affecting the straining of bacteria, as are the hydraulic loading rate or the extent of clogging layer development in the filter. Adsorption of cells to the porous media is influenced by the content of organic matter, degree of biofilm development, and electrostatic attraction due to ion strength of the solution or electrostatic charges of cell- and particle surfaces. The rate of inactivation of pathogenic microorganisms, in adsorbed or liquid phases, has been shown to be affected by abiotic and biotic factors such as moisture content, pH, temperature, organic matter, bacterial species, predation, and antagonistic symbiosis between microorganisms in the system.  相似文献   

3.
The organic matter released from septic tanks can disturb the subsequent step in on-site wastewater treatment such as the innovative filters for phosphorus removal. This study investigated the effect of organic load on phosphorus (P) and bacteria removal by reactive filter materials under real-life treatment conditions. Two long-term column experiments were conducted at very short hydraulic residence times (average ∼5.5 h), using wastewater with high (mean ∼120 mg L−1) and low (mean ∼20 mg L−1) BOD7 values. Two alkaline filter materials, the calcium-silicate material Polonite and blast furnace slag (BFS), were tested for the removal capacity of total P, total organic carbon (TOC) and Enterococci. Both experiments showed that Polonite removed P significantly (p < 0.01) better than BFS. An increase in P removal efficiency of 29.3% was observed for the Polonite filter at the lower concentration of BOD7 (p < 0.05). Polonite was also better than BFS with regard to removal of TOC, but there were no significant differences between the two filter materials with regard to removal of Enterococci. The reduction in Enterococci was greater in the experiment using wastewater with high BOD7, an effect attributable to the higher concentration of bacteria in that wastewater. Overall, the results demonstrate the importance of extensive pre-treatment of wastewater to achieve good phosphorus removal in reactive bed filters and prolonged filter life.  相似文献   

4.
Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico-chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. Experimental results demonstrate that HAIX's phosphate-sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity.  相似文献   

5.
Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼27 mm (62 percentile). During higher water temperatures (>∼14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region.  相似文献   

6.
Manser R  Gujer W  Siegrist H 《Water research》2006,40(12):2416-2426
A knowledge of the decay rates of autotrophic bacteria is important for reliably modeling nitrification in activated sludge plants. The introduction of nitrite to activated sludge models also requires the separate determination of the kinetics of ammonia- and nitrite-oxidizing bacteria. Batch experiments were carried out in order to study the effects of different oxidiation-reduction potential conditions and membrane separation on the separate decay of these bacteria. It was found that decay is negligible in both cases under anoxic conditions. No significant differences were detected between the membrane and conventional activated sludge. The aerobic decay of these two types of bacteria did not diverge significantly either. However, the measured loss of autotrophic activity was only partly explained by the endogenous respiration concept as incorporated in activated sludge model no. 3 (ASM3). In contrast to nitrite-oxidizing bacteria, ammonia-oxidizing bacteria needed 1-2 h after substrate addition to reach their maximum growth rate measured as a maximum OUR. This pattern could be successfully modeled using the ASM3 extended by enzyme kinetics. The significance of these findings on wastewater treatment is discussed on the basis of the extended ASM3.  相似文献   

7.
Phosphorus removal from wastewater by mineral apatite   总被引:1,自引:0,他引:1  
Bellier N  Chazarenc F  Comeau Y 《Water research》2006,40(15):2965-2971
Natural apatite has emerged as potentially effective for phosphorus (P) removal from wastewater. The retention capacity of apatite is attributed to a lower activation energy barrier required to form hydroxyapatite (HAP) by crystallization. The aim of our study was to test the P removal potential of four apatites found in North America. Minerals were collected from two geologically different formations: sedimentary apatites from Florida and igneous apatites from Quebec. A granular size ranging from 2.5 to 10mm to prevent clogging in wastewater applications was used. Isotherms (24 and 96 h) were drawn after batch tests using the Langmuir model which indicated that sedimentary apatites presented a higher P-affinity (K(L)=0.009 L/g) than igneous apatites (K(L) approximately 0.004 L/g). The higher density of igneous material probably explained this difference. P-retention capacities were determined to be around 0.3mg P/g apatite (24 h). A 30 mg P/L synthetic effluent was fed during 39 days to four lab-scale columns. A mixture of sedimentary material (apatite and limestone 50-50%, w/w) showed a complete P-retention during 15 days which then declined to 65% until the end of the 39 days lab scale test period. A limitation in calcium may have limited nucleation processes. The same mixture used in a field scale test showed 60% P-retention from a secondary effluent (30 mg COD/L, 10 mg Pt/L) during 65 days without clogging.  相似文献   

8.
The application of batch systems to the direct treatment of dairy wastewater was investigated. Batch experiments were conducted to study the organics removal and simultaneous nitrification and denitrification (SND) process. The experiment was conducted by varying four independent parameters (mixed liquor suspended solids, chemical oxygen demand [COD]/N ratio, aeration time and cycling time), using a central composite design under response surface methodology. The process responses of five dependent parameters (COD, Total kjehldahl nitrogen (TKN), NO3 ?, effluent NO3 ? and effluent total nitrogen) were studied, and in each case, the percentage removal in batch runs was determined with each process displayed in contour plots. Finally, after optimizing the process conditions, the best treatment of dairy wastewater under optimized conditions was established and the responses were shown. This study shows that microbial granules cultivated under the alternating aerobic/anaerobic conditions in batch systems could efficiently remove organic carbon and convert all the ammonium to nitrogen gas.  相似文献   

9.
Bulking and foaming are two frequently occurring operational problems in activated sludge wastewater treatment plants, and these problems are mainly associated with excessive growth of filamentous bacteria. In this study, a comprehensive investigation of the identity and population dynamics of filamentous bacteria in 28 Danish municipal treatment plants with nutrient removal has been carried out over three years. Fluorescence in situ hybridization was applied to quantify more than twenty probe-defined populations of filamentous bacteria that in total constituted a large fraction of the entire microbial community, on average 24%. Despite the majority being present within the flocs, they occasionally caused settling problems in most of the plants. A low diversity of probe-defined filamentous bacteria was found in the plants with Microthrix and various species belonging to phylum Chloroflexi (e.g., type 0803 and type 0092) as the most abundant. Few other filamentous probe-defined species were found revealing a large similarity between the filamentous populations in the plants investigated. The composition of filamentous populations was stable in each plant with only minor changes in relative abundances observed during the three-year study period. The relative composition of the different species was unique to each plant giving a characteristic “fingerprint”. Comprehensive statistical analyses of the presence and abundance of the filamentous organisms did not reveal many correlations with a particular plant design or process parameter.  相似文献   

10.
Synthetic musks have been reported in wastewaters at concentrations as high as tens of micrograms per litre. The two most significant polycyclic musk fragrance compounds are 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran (HHCB, trade name galaxolide®) and 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (AHTN, trade name tonalide®). We report the result of several irradiation and advanced oxidation processes carried out on samples of the effluent of a wastewater treatment plant located in Alcalá de Henares, Madrid. Wastewater samples were pre-ozonated and spiked with 500 ng/L of tonalide or galaxolide in order to obtain final concentrations in the same order as the raw effluent. The treatments assayed were ozonation with and without the addition of hydrogen peroxide (O3, O3/H2O2), ultraviolet (254 nm low pressure mercury lamp) and xenon-arc visible light irradiation alone and in combination with ozone (UV, O3/UV, Xe, O3/Xe) and visible light photocatalytic oxidation using a Ce-doped titanium dioxide photocatalyst performed under continuous oxygen or ozone gas bubbling (O2/Xe/Ce-TiO2, O3/Xe/Ce-TiO2). In all cases, samples taken at different contact times up to 15 min were analyzed. An analytical method based on stir bar sorptive extraction (SBSE), followed by comprehensive two-dimensional gas chromatography (SBSE-GC × GC-TOF-MS), was used for the automatic searching and evaluation of the synthetic musks and other nonpolar or semipolar contaminants in the wastewater samples. In all cases tonalide was more easily removed than galaxolide. The best results for the latter (more than 75% removal after 5 min on stream) were obtained from ozonation (O3) and visible light photocatalytic ozonation (O3/Xe/Ce-TiO2). A significant removal of both pollutants (∼60% after 15 min) was also obtained during visible light photocatalysis (O2/Xe/Ce-TiO2). UV radiation was able to deplete tonalide (+90%) after 15 min but only reduced the concentration of galaxolide to about half of its initial concentration. The toxicity of treated samples decreased for O3/UV and O3/Ce-TiO2, but increased during irradiation processes UV, Xe and Xe/Ce-TiO2. Ozone treatments tend to decrease toxicity up to a certain dosage, from which point the presence of toxic transformation products has adverse effects on aquatic microorganisms.  相似文献   

11.
《Water research》1996,30(1):142-152
The Bio-Denipho® process, a “phased isolation ditch” technology, varies both aeration pattern and flow path in a continuous flow multi-reactor system to force oscillation of organic and nutrient concentrations in process reactors. Using a six-phase cycle, desired biochemical transformations (e.g. nitrification, denitrification), are accomplished at different times in the same reactor. We used an industry-standard biokinetic model (IAWPRC) to develop and test three control strategies of increasing sophistication: (a) fixed phase lengths, (b) use of constant set points to switch between phases thus resulting in variable phase lengths, and (c) use of switching set points which are a function of on-line measurements (criteria functions). These strategies were optimized for nominal diurnal operating conditions, with the objective of minimizing effluent soluble nitrogen, subject to an upper bound on the oxygen transfer coefficient. In addition, performance of the strategies was simulated against 1-, 2-, and 5-day sustained peak loads. Under nominal diurnal conditions, the performance obtained with each strategy was comparable. Under peak loading conditions, both of the switching set point strategies gave substantially better performance than the fixed phase length strategy. Criteria functions were marginally better than constant switch points.  相似文献   

12.
Batch experimental studies were conducted to qualitatively assess the Luxury Uptake mechanism and relevant parameters for removal of phosphates from municipal wastewaters by activated sludge. The experiments were conducted with return activated sludge and primary effluent samples from the Bonnybrook Sewage Treatment Plant. Calgary. Alberta. Canada.Aeration rates. aeration time and return sludge/primary effluent ratio were shown to be important parameters affecting biological phosphate removal. High phosphate removals in excess of growth requirements, demonstrated in the laboratory indicate Luxury Uptake by sludge microorganisms. The controversial findings of the Carbon Limitation and Calcium Precipitation Theories were not applicable in this case.  相似文献   

13.
After about 500 cycles have been continuously performed on a laboratory pilot plant, ion exchange resins have proved to be an effective means to treat municipal secondary effluents to prevent eutrophication in the receiving water bodies. Clinoptilolite, a natural zeolite, and Kastel A 510, a strong base anion resin with adsoptive properties, act selectively to remove ammonium and phosphate ions, at the same time affording filtration and adsorption of the wastewater. NaCl at sea-water concentration is used as resin regenerant. After the recovery of products of fertilizing value, as MgNH4PO4 and NH4 NO3, from the eluates, the latter can be recycled.  相似文献   

14.
15.
Occurrence and removal efficiencies of 13 pharmaceuticals and personal care products (PPCPs) as well as BOD5, TSS and NH4+ were evaluated for the first time in thirteen onsite household secondary wastewater treatment systems, including two compact biofilters followed by Filtralite-P filter units, two biological sand filters, five horizontal subsurface flow and four vertical flow constructed wetlands. As expected, all systems removed TSS and BOD5 efficiently (>95% removal). The PPCP removal efficiencies exceeded 80% with the exception of carbamazepine, diclofenac and ketoprofen because of their more recalcitrant characteristics. Despite no statistical differences in the PPCP removal were observed between the different systems evaluated, the vegetated vertical flow constructed wetlands which had unsaturated flow and hence better oxygenation, appeared consistently to perform better in terms of PPCP removal efficiency. The combined effects of vegetation and unsaturated water flow provide a higher tolerance to variations in loading rate and a consistent removal rate.  相似文献   

16.
The bacterial origin of waterborne diseases was discovered at the turn of thiscentury. Introduction of slow sandfiltration, chlorination, and bacteriological control dates back to the same period. Although greater concern is given to-day to chemical pollutants or to viruses, bacteria are still a monace to countries with advanced water treatment.Within the last decade outbreaks were reported in Europe and the US due to Salmonellatypes, Shigella, E. Coli, and to Vibrio cholerae, generally due to deficiencies in treatment, and often caused by smaller private works.A wider spectrum of bacteria must be taken into consideration to-day, Enterobacteriaceae are still the most important including Yersinia, E. coli, Klebsiella, and Enterobacter. The opportunistic microorganisms (pseudomonada, Acinetobacter, Campylobacter, Aeromonas, Plavobacterium) can also a danger.  相似文献   

17.
Granular media filtration was evaluated for the removal of a suite of chemical contaminants that can be found in wastewater. Laboratory- and pilot-scale sand and granular activated carbon (GAC) filters were trialled for their ability to remove atrazine, estrone (E1), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR) and N-nitrosodiethylamine (NDEA). In general, sand filtration was ineffective in removing the contaminants from a tertiary treated wastewater, with the exception of E1 and EE2, where efficient removals were observed after approximately 150 d. Batch degradation experiments confirmed that the removal of E1 was through biological activity, with a pseudo-first-order degradation rate constant of 7.4 × 10−3 h−1. GAC filtration was initially able to effectively remove all contaminants; although removals decreased over time due to competition with other organics present in the water. The only exception was atrazine where removal remained consistently high throughout the experiment. Previously unreported differences were observed in the adsorption of the three nitrosamines, with the ease of removal following the trend, NDEA > NMOR > NDMA, consistent with their hydrophobic character. In most instances the removals from the pilot-scale filters were generally in agreement with the laboratory-scale filter, suggesting that there is potential in using laboratory-scale filters as monitoring tools to evaluate the performance of pilot- and possibly full-scale sand and GAC filters at wastewater treatment plants.  相似文献   

18.
Forni C  Chen J  Tancioni L  Caiola MG 《Water research》2001,35(6):1592-1598
Water fern (Azolla filiculoides Lam.) has been assessed for nitrogen and phosphorus removal in outdoor experiments comparing sewage water (S) from an experimental aquaculture plant, well water (W) and mineral growth medium Hoagland (H). The experiments were undertaken during the spring and the summer. The yield of fern biomass and nitrogenase activity was higher in H than in W and S waters. The enzyme activity had a decreasing trend with significant differences (p < 0.05) in the three waters. Peroxidase (POD) activity in April decreased with significative differences in W and S waters (p < 0.05). The electrical conductivity and the concentrations of NO3- in the three waters decreased significantly (p < 0.05). The highest removal of nitrate from the media was obtained in July. In S water, NO2- concentration decreased, while it increased in W water. PO(4)3- concentration was very low in W and S waters and decreased in H medium. The results obtained confirm the ability of the fern to grow in sewage water.  相似文献   

19.
Nitrogen removal from wastewater by a catalytic oxidation method   总被引:7,自引:0,他引:7  
The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.  相似文献   

20.
Efficient biological nitrogen removal from pharmaceutical wastewater has been focused recently. The present study dealt with the treatment of colistin sulfate and kitasamycin manufacturing wastewater through anaerobic ammonium oxidation (ANAMMOX). The biotoxicity assay on luminescent bacterium Photobacterium phosphoreum (T3 mutation) showed that the pharmaceutical wastewater imparted severe toxicity with a relative luminosity of 3.46% ± 0.45%. During long-term operation, the cumulative toxicity from toxic pollutants in wastewater resulted in the performance collapse of conventional ANAMMOX process. A novel ANAMMOX process with sequential biocatalyst (ANAMMOX granules) addition (SBA-ANAMMOX process) was developed by combining high-rate ANAMMOX reactor with sequential biocatalyst addition (SBA). At biocatalyst addition rate of 0.025 g VSS (L wastewater)−1 day−1, the nitrogen removal rate of the process reached up to 9.4 kg N m−3 day−1 in pharmaceutical wastewater treatment. The effluent ammonium concentration was lower than 50 mg N L−1, which met the Discharge Standard of Water Pollutants for Pharmaceutical Industry in China (GB 21903-2008). The application of SBA-ANAMMOX process in refractory ammonium-rich wastewater is promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号