首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses and susceptibility of 14 human glioblastoma cell lines to human natural tumor necrosis factor-alpha (TNF) were studied in vitro. Susceptibility of glioblastoma cells to TNF varied in experimental conditions applied. Most of glioblastoma cell lines were resistant to cytotoxic activity of TNF in a MTT assay at concentrations below 16 U/ml for 72 h exposure. However, TNF at higher dose, in prolonged exposure and against low density of target cells was antiproliferative for certain glioblastoma cultures. TNF exposure at 10 U/ml for 48 h suppressed DNA synthesis in 9 of 14 glioblastoma cultures, but increased in 3 cultures. In addition, colony forming assay showed anti-clonogenic activity of TNF in 5 of 6 glioblastoma cell lines tested. In spite of their low susceptibility to TNF, glioblastoma cells well responded to TNF stimulation at low dose (10 U/ml) for a short period in the absence of cell damage. Productions of Interleukin-6 (IL-6), IL-8-like activity, granulocyte-macrophage colony stimulating factor (GM-CSF), prostaglandin E2 (PGE2) and manganous superoxide dismutase (Mn-SOD) were enhanced or induced by the low-dose TNF stimulation. Mn-SOD, a protein protective against oxidative cell damage, was well induced in time- and dose-dependent manner, however did not correlate with TNF resistance. Whereas the levels of PGE2 in TNF-susceptible cell lines, H-4 and SF-188, were higher than those of other lines. In conclusion, most of glioblastoma cells are resistant to TNF cytotoxic effects, but highly responsive to TNF stimulation. Its effect on glioblastoma cells appears to modulate cell differentiation rather than to kill the cells.  相似文献   

2.
Increasing evidence suggests that in mammals, astrocytes are a heterogenous family of cells all of which share certain properties, but differ in lineage, biochemical and functional aspects. It seems likely that glioblastomas, arising from glial precursors, may also represent a family of related but distinct cell types. We have examined the antigenic characteristics and differentiative potential of 7 different human glioblastoma cell lines in vitro. All the cell lines were labeled with a monoclonal antibody 7B11 which labels all classes of astrocytes and their precursors in the rat CNS. U138MG and Tm3 cells expressed antigens on their surfaces recognized by the monoclonal antibodies A2B5 and HNK-1. When grown in serum-free medium in the presence of cAMP and theophylline, U138MG cells assumed a process-bearing morphology and some cells expressed the Gal-C antigen specific for oligodendrocytes. Under identical conditions, Tm3 cells converted to process-bearing cells, some of which expressed glial fibrillary acidic protein (GFAP) specific for astrocytes. Other cell lines with similar antigenic characteristics did not respond similarly to cAMP and theophylline. Finally, A2781 cells were GFAP immunoreactive and unlabeled by either A2B5 or HNK-1 antibodies. These observations suggest that individual glioblastoma cell lines may be derived from distinct glial precursor cells in the vertebrate CNS.  相似文献   

3.
Human glioblastoma multiforme cell lines, brain tumor biopsy tissue, and normal human fetal brain synthesize interleukin (IL)-6 and IL-6 receptor (IL-6R). Neither of these is expressed in human neurons or neuroblastoma cell lines in culture. Astrocytes from fetal brain grown in culture retain the ability to synthesize IL-6 but do not express IL-6R as inferred from RT-PCR and Southern blot studies. Coexpression of IL-6 and IL-6R in the glioblastoma cell line U87MG is confirmed by immunofluorescence staining. Both specific monoclonal antibodies against IL-6 and IL-6R and antisense oligonucleotide to IL-6 mRNA inhibit the growth of U87MG cells in culture, suggesting the existence of a functional autocrine growth loop. Anti-IL-6 antibodies also inhibit the growth of glioblastoma cell lines U373 and U118. The expression of IL-6 by human fetal astrocytes in culture is highly suggestive of its role as an oncofetal protein responsible for rapid proliferation of fetal and tumor cells but not cells of adult brain.  相似文献   

4.
Patch-clamp techniques were used to characterize the channel activity of mitochondrial inner membranes of two human osteosarcoma cell lines: a mitochondrial genome-deficient (rho0) line and its corresponding parental (rho+) line. Previously, two high conductance channels, mitochondrial Centum picoSiemen (mCS) and multiple conductance channels (MCC), were detected in murine mitochondria. While MCC was assigned to the protein import in yeast mitochondria, the role of mCS is unknown. This study demonstrates that mCs and MCC activities from mouse mitochondria are indistinguishable from those of human mitochondria. The channel activities and their functional expression levels are not altered in cells lacking mtDNA. Hence, rho0 cells may provide a model system for elucidating the role of mitochondrial channels in disease processes and apoptosis.  相似文献   

5.
6.
7.
This study was undertaken to examine the expression and role of the endoplasmic reticulum (ER) proteins calreticulin and ryanodine receptors, and mitochondria, in cultured astrocytes. Using several lines of investigation, we have identified a key role for mitochondria in astrocyte Ca2+ signalling: (1) a significant correlation was found between sites of regenerative Ca2+ wave amplification (possessing high amplitude ER Ca2+ release) and the location of mitochondria in the cell; (2) norepinephrine (2 microM) caused a rapid-onset increase in rhod 2 fluorescence in 34% of astrocyte mitochondria, indicating that cytosolic Ca2+ responses result in mitochondrial Ca2+ elevation; and (3) pretreatment with the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone to inhibit mitochondrial activity markedly reduced the amplitude of subsequent norepinephrine-evoked cytosolic Ca2+ responses. We then investigated the roles of several ER proteins in Ca2+ signalling by immunocytochemistry. Ryanodine receptors and calreticulin were found to be expressed in heterogeneous patterns in astrocytes. The expression pattern of calreticulin corresponded closely with the distribution of mitochondria, whereas the expression of ryanodine receptors was not similar to that of either of these cellular factors. We measured Ca2+ wave kinetics in a single astrocyte, then assessed protein distribution by immunocytochemistry in the same cell. Cross-correlation between norepinephrine-evoked Ca2+ wave amplitude and calreticulin distribution indicated a close spatial relationship between this Ca2+-binding protein and sites of regenerative wave amplification. These results demonstrate that amplification sites for Ca2+ waves in astrocytes are identifiable by accumulations of calreticulin (and type 2 InsP3Rs), and by the presence of mitochondria, which may regulate the ER Ca2+ release process.  相似文献   

8.
Glioblastoma is a highly aggressive form of brain cancer characterized by uncontrolled cell growth resulting from a loss of cell cycle regulation. In this study we determined the antiproliferative effects of interferon gamma (IFNgamma) on the glioblastoma cell lines T98G, SNB-19 and U-373, focusing on the ability of IFNgamma to increase levels of p21WAF1/CIP1, an important negative regulator of cell cycle events. IFNgamma was found to inhibit the growth of all cell lines, with inhibition ranging from 82.2% to 45.4%. Flow cytometry analysis showed that IFNgamma treatment caused a cell cycle delay in the G1 or S phases. The strength of this delay varied, correlating with the degree by which IFNgamma inhibited proliferation of each cell line. IFNgamma treatment increased the production of the cyclin dependent kinase inhibitor (CKI) p21WAF1/ CIP1 in all cell lines, the level and kinetics of production of which correlated with the degree and stage of inhibition of cellular proliferation. Further, immunoprecipitation of p21WAF1/CIP1 in complexes of p21WAF1/CIP1/cyclin-dependent kinase 2 (cdk2)/cyclin showed that the amount of p21WAF1/CIP1 in the complexes and the inhibition of cdk2-cyclin kinase activity correlated with the level of p21WAF1/CIP1 produced in the cells by IFNgamma. These results show that IFNgamma has significant antiproliferative effects on the glioblastoma cell lines and suggest that p21WAF1/CIP1 plays a role in mediating these effects.  相似文献   

9.
10.
1 alpha, 25-dihydroxyvitamin D3 was previously shown to induce cell death in brain tumour cell lines when added to the medium at micromolar concentration. In this paper we show that Cholecalciferol, a poor ligand of the vitamin D receptor, also induces cell death of HU197 human glioblastoma cell line and early passages cultures derived from a recurrent human glioblastoma. This finding suggests that the effects of vitamin D metabolites on brain tumour cells are at least partially independent from the activation of the classic nuclear receptor pathway. Vitamin D metabolites have been shown to activate the sphingomyelin pathway inducing an increase in cellular ceramide concentration. We determined the levels of sphingomyelin ceramide and ganglioside GD3 in Hu197 cells after treatment with cholecalciferol. A significant increase in ceramide concentration and a proportional decrease in sphingomyelin was already present after 6 hours of cholecalciferol treatment when no morphological changes were visible in the cultures. Treatment with ceramides (N-acetylsphingosine or natural ceramide from bovine brain) of the same cells also induces cell death. Similarly, treatment of the same cells with bacterial Sphingomyelinase also results in cell death. The demonstration of an increase in intracellular ceramide after cholecalciferol treatment and the ability of ceramide to induce cell death suggest that the sphingomyelin pathway may be implicated in the effect of vitamin D metabolites on human glioblastoma cells. Inhibition of ceramide biosynthesis by fumonisin B1 treatment did not alter the dose response curve of HU197 cells to cholecalciferol. Insensitivity to fumonisin B1 together with a decrease in sphingomyelin content after cholecalciferol treatment indicate that activation of sphingomyelinase should be responsible for the increase in intracellular ceramide concentration.  相似文献   

11.
In experimental allergic encephalomyelitis (EAE) myelin basic protein (MBP) specific T cells differ in their encephalitogenic potential. To investigate the functional diversity of human MBP specific T cell lines, we analysed their cytotoxic activity against human astrocytes and monocytes. Five out of 14 MBP specific T cell lines killed astrocytes in the presence of MBP. Nevertheless, all lines lysed blood derived monocytes. T cell lines that lysed astrocytes efficiently in the presence of MBP, recognized peptide aa 80-99/86-105 in context with HLA-DRB5 * 0101, peptide aa 50-69/61-83 in context with HLA-DRB1 * 1501 and peptides aa 139-153, and aa 148-162 in context with HLA-DRB1 * 0101. There was no correlation of MBP-mediated lysis of astrocytes with TCR-Vbeta usage, HLA-restriction and the production of tumor-necrosis-factor-alpha (TNF-alpha), lymphotoxin (LT) and interferon-gamma (IFN-gamma). Different lysis of astrocytes, however, revealed a functional heterogeneity of MBP specific T cells, which was not observed by using monocytes as targets.  相似文献   

12.
1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) induced dominant lethal and specific-locus mutations in male mice. For both compounds the germ cell stage sensitive to the induction of dominant lethal mutations was dose dependent. A dose of 5 mg BCNU per kg b.wt. induced dominant lethal mutations primarily in spermatocytes, whereas higher doses of BCNU induced dominant lethals in spermatids and spermatocytes. Following doses of 5 and 10 mg CCNU per kg b.wt. dominant lethals were induced in spermatids and spermatocytes similar to the results for higher doses of BCNU. Higher dose exposure to BCNU and CCNU was associated with dominant lethals expressed as pre-implantation loss (reduction in total number of implants). In addition, higher doses of CCNU showed a cytotoxic effect in differentiating spermatogonia. Both compounds induced specific-locus mutations in post-spermatogonial germ cell stages of mice. However, CCNU increased also the specific-locus mutation frequency in spermatogonia in two out of three experiments. We conclude in analogy with criteria developed by IARC, that BCNU and CCNU are potential human mutagens.  相似文献   

13.
The purpose of this study is to evaluate the radiation sensitivity of human soft tissue sarcoma cell lines in vitro and to compare with that of human breast carcinoma and glioblastoma cell lines. The intrinsic radiation sensitivity parameters of seven human soft tissue sarcomas and eight breast carcinoma cell lines were investigated in vitro by clonogenic assays for single-dose irradiation under aerobic conditions on cells in exponential phase of growth. The results for sarcoma cell lines showed that the mean surviving fraction at 2 Gy (SF2) was 0.39 (SD +/- 0.09) with a range of 0.24 to 0.53, and the average mean inactivation dose (MID) was 1.92 (SD +/- 0.35) range from 1.36 Gy to 2.49 Gy. These values were not different from that of breast cell lines examined concurrently and using the same experimental methods (mean SF2 0.38, SD +/- 0.09; MID 1.9 Gy, SD +/- 0.37). However radiobiological parameters of nine karyotyped human malignant glioma cell lines determined earlier in this laboratory were significantly higher (mean SF2 0.50 +/- 0.14; mean MID 2.61 +/- 0.60). In conclusion, the data presented here do not support the view that cells of sarcomas show unusual radiation resistance. To the extent that the in vitro determined cellular radiation sensitivity reflects the tumor response in vivo, the success rate for radiation applied against sarcoma and breast carcinoma of comparable size could be similar.  相似文献   

14.
Salvage and de novo purine and pyrimidine nucleotide syntheses were studied in H9 (a human lymphoid cell line) and H9-AZT cells (chronically zidovudine-exposed H9 cells). H9-AZT cells incorporated 18% and 27% more hypoxanthine and uridine, respectively, than H9 cells. The incorporation of the formate and bicarbonate was similar in both cell lines. Purine and pyrimidine de novo synthesis was inhibited by hypoxanthine and uridine, respectively. Hypoxanthine and uridine salvage pathways, however, were not affected by formate or bicarbonate. Short-term AZT exposure of cells had no effect on nucleotide synthesis. Some of the problems encountered in the studies of purine and pyrimidine synthesis are also discussed.  相似文献   

15.
The murine brain fatty acid binding protein (B-FABP) is encoded by a developmentally regulated gene that is expressed in radial glial cells and immature astrocytes. We have cloned the human B-FABP gene and have mapped it to chromosome 6q22-23. We show that B-FABP mRNA is expressed in human malignant glioma tumor biopsies and in a subset of malignant glioma cell lines, as well as in human fetal retina and brain. Malignant glioma tumors are characterized by cytoplasmic bundles of glial fibrillary acidic protein (GFAP), a protein normally expressed in mature astrocytes. Establishment of malignant glioma cell lines often results in loss of GFAP. The subset of malignant glioma cell lines that express GFAP mRNA also express B-FABP mRNA. Co-localization experiments in cell lines indicate that the same cells produce both GFAP and B-FABP. We suggest that some malignant gliomas may be derived from astrocytic precursor cells which can express proteins that are normally produced at different developmental stages in the astrocytic differentiation pathway.  相似文献   

16.
Two methods were used to isolate mitochondria from Crithidia fasciculata. In the first method, cells were weakened by exposure to hypotonic conditions and then disrupted by blending; mitochondria were subsequently isolated using disodium 3,5-diacetoamido-2,4,6-triiodobenzoate gradients. In the second, cells were treated with digitonin before disruption; mitochondria were purified by differential centrifugation. Both preparations were examined with the electron microscope and were also shown to possess several characteristic biochemical properties of mitochondria. Kinetoplast DNA was present in the mitochondria, uncontaminated by nuclear DNA. Analysis by polyacrylamide gel electrophoresis showed two RNA components of molecular weights of 0-47 X 10(6) and 0-22 X 10(6), in addition to cytoplasmic RNA contamination. Four mitochondrial components with sedimentation coefficients of 14-6S, 11-4S, 10-1S and 9-9S were identified on sucrose density gradients. Ethidium bromide abolished the incorporation of [5-3H]uridine into the presumed mitochondrial RNA.  相似文献   

17.
The gene therapy strategy using the hsvl-thymidine kinase gene (TK) and ganciclovir (GCV) injections that has been used for treating human glioblastomas has not been as effective as expected after the first animal experiments. A better understanding of the different steps involved in this treatment, like gene transfer, gene expression, and sensitivity of the recipient cells, is needed. After proposing sensitivity criteria for the TK/GCV system and for the bystander effect, based on the levels of GCV that can be reached in vivo, we studied seven human glioblastoma cell lines (U87, U118, U251, SNB19, SNB75, SF295, SF539) for their sensitivity to the TK/GCV system. We also studied their in vitro bystander effect and their in vitro transfectability using LipofectAMINE as a transfection enhancer. Among six human glioblastoma cell lines stably transfected with the TK gene, five were sensitive to TK/GCV, and two had a good in vitro bystander effect. The in vitro transfectability of the cell lines tested was low (< or = 1%) compared to that of an established animal cell line, C6 rat glioma, in which 20-30% of the cells can be transfected routinely. According to this in vitro analysis, most of the glioblastoma cell lines should be sensitive to the TK/GCV system, but there is an urgent need for agents to increase transfection efficiency.  相似文献   

18.
This study has found that mitochondrial NADH-CoQ1 reductase (complex I) activity is significantly lower in C57 mice astrocytes compared with Wistar and Sprague-Dawley rat astrocytes, and a human astrocytoma cell line. In addition, complex I activity is 4-fold greater in Sprague-Dawley neurones when compared to Wistar or C57 neurones. These findings have important implications for mitochondrial studies involving rodent or human cell line systems, and in particular, indicate the importance of choosing an appropriate model when investigating the mitochondrial respiratory chain.  相似文献   

19.
We demonstrated, for the first time, that the flavonoid purpurogallin (PPG) at 0.2-0.5 mM inhibits DNA synthesis of murine fibrosarcoma L-929 and human U-87 MG glioblastoma cells in vitro. In the human U-87 MG glioblastoma cell experiments, we found that when cells were incubated with PPG at 0.5 mM for 0.5 and 24 h, about 25 and 50% inhibition of DNA compared with control were observed respectively. In contrast, 0.5 mM Trolox (a more polar analogue of vitamin E) did not inhibit DNA synthesis in both cell lines. These data indicate that PPG inhibits the synthesis of DNA in two distinct tumour cell lines.  相似文献   

20.
O6-Methylguanine-DNA methyltransferase (MGMT), a constitutively expressed DNA repair protein, removes alkyl groups from the O6-position of guanine in DNA. Tumor cells with high MGMT activity are resistant to nitrosoureas and other agents that form toxic O6-alkyl adducts. O6-Benzylguanine (BG) inactivates the MGMT protein and thereby enhances the sensitivity of tumor cells to alkylating drugs. However, the therapeutic potential of BG is limited by its poor solubility and its nonspecific inactivation of MGMT in normal tissues as well as in tumor tissues. Consequently, BG analogues are being developed to identify agents that have more favorable pharmacological characteristics. We evaluated O6-benzyl-2'-deoxyguanosine (dBG), the 2'-deoxyribonucleoside analogue of BG, for its ability to inhibit MGMT and to potentiate 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in a MGMT-positive human brain tumor xenograft, Daoy. When given i.p. 1 h before BCNU (25 mg/m2) to animals bearing s.c. tumors, dBG (134 mg/m2) produced a growth delay of 24.7 days, compared to 21.6 days after treatment with an equimolar dose of BG (90 mg/m2) plus BCNU and -0.6 days after treatment with BCNU alone. The combination of dBG + BCNU also increased the survival of animals bearing intracranial tumors by 65%. By increasing the dose of dBG to 300 mg/m2 (the maximum dose that could be delivered i.p. in a standard treatment volume), the growth delay of s.c. tumors increased from -0.1 days with BCNU alone to 39.3 days. dBG suppressed both tumor and liver MGMT activity to less than 1.5% of baseline, and dBG + BCNU induced extensive perivascular apoptosis. Because dBG is a 10-fold less potent MGMT inhibitor than BG in HT-29 cell extracts, these results illustrate the capacity of BG analogues to potentiate BCNU toxicity, despite less in vitro activity than the parent compound, and emphasize the importance of in vivo evaluation of BG analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号