共查询到19条相似文献,搜索用时 140 毫秒
1.
2.
由于多阈值图像分割的时候,Otsu算法计算量过大的问题,提出了基于细菌觅食优化算法的多阈值图像分割方法。首先,将细菌觅食优化算法中趋化操作中的固定步长进行动态调整。其次将原算法迁徙操作中细菌的随机驱散改成正负一的操作。与Otsu算法相比较而言,改进后的算法计算量明显减小。实验结果表明,该算法能够更快速,更准确的实现多阈值图像分割。 相似文献
3.
针对图像多阈值分割中阈值搜索是有序正整数规划的特点,提出了一种用于指数熵多阈值分割的改进细菌觅食优化(Improved Bacterial Foraging Optimization,IBFO)算法。首先,将标准的细菌觅食优化(Standard Bacterial Foraging Optimization,SBFO)算法的趋化算子改成动态趋化算子以增强趋化操作的自适应性;然后,将SBFO中的迁徙算子替换成混合随机和动态的迁徙算子,将迁徙过程划分为两个阶段,第一阶段为随机迁徙,目的是增强全局搜索能力,第二阶段为动态局部迁徙,目的是提高局部搜索能力;随后,丢弃SBFO中的感应机制以便加快运行速度;最后,将IBFO算法进一步修改以满足有序正整数规划的要求,并将其应用于指数熵多阈值分割方法中。图像分割实验结果表明,与SBFO,MBFO和IPSO算法相比,提出的IBFO方法不仅优化效果更好,而且运行速度更快。 相似文献
4.
针对单阈值图像分割方法在求取比较复杂的图像时效果不理想及粒子群算法容易陷入局部最优且速度较慢等等问题,提出了基于混沌粒子群优化算法的多阈值图像分割方法。该方法利用混沌运动随机性、遍历性和初值敏感性,将混沌粒子群优化算法与多阈值法相结合作全局搜索,实验结果表明了基于混沌粒子群优化算法的多阈值图像分割法用于阈值寻优减少了搜索时间,并且运行时间不随阈值数目的增加而显著增加。 相似文献
5.
针对二维熵图像分割在求取最佳阈值时存在计算量大及粒子群算法容易陷入局部最优、运算速度慢等问题,提出了改进的粒子群优化算法的二维熵图像分割方法。该方法是在雁群启示的粒子群算法基础上,对速度公式进行改进,并引入随机扰动策略,从两个方面同时改进以提高算法的收敛速度,以及克服局部极值的能力。仿真结果表明,将该方法用于阈值寻优减少了搜索时间,提高了收敛速度,强化了图像处理的实时性。 相似文献
6.
彩色图像分割是数字图像处理的一个难点。本文研究群体智能算法对彩色图像的分割,针对布谷鸟算法莱维飞行寻优的跳跃性带来的缺陷,在每次莱维飞行结束后引入一种改进的粒子群位置变异方程引导寻优,并对发现概率和步长因子分别提出新的自适应方程,在此基础上提出一种混合粒子群布谷鸟算法(HPCS),以此混合算法进行彩色图像多阈值分割。实验结果表明,本文提出的HPCS算法在彩色图像分割的效率和质量方面均比较理想。 相似文献
7.
针对混合蛙跳算法(Shuffled Frog Leaping Algorithm,SFLA)存在的计算复杂度高、优化效率不理想等问题,提出了一种改进的混合蛙跳算法(Improved Shuffled Frog Leaping Algorithm,ISFLA)。在原始 SFLA的基础上进行如下改进:首先,将其中每次只更新组内最差青蛙的方式改为更新组内所有青蛙的方式,这既增大了获得优质解的概率,又省去了调整组内迭代次数的步骤,从而提升了优化效率和可操作性;其次,将基于局部最优更新的方法和基于全局最优更新的方法融合为一种混合扰动更新方法,从而避免了复杂条件的选择步骤,进一步提升了优化效率;最后,去掉随机更新方式,以免优质解被破坏,从而提高了整体的优化性能。将 ISFLA 用于 CEC2005和CEC2015连续基准函数的优化测试和基于Renyi 熵的灰度和彩色图像分割的多阈值选择实验中,结果表明,与 SFLA 和state-of-the-art的LSFLA 相比,ISFLA 具有更高的优化效率,更适用于多阈值图像分割的阈值选择。 相似文献
8.
把粒子群算法应用到多阈值图像分割中,结合已有的模糊C-均值聚类法提出了一种基于模糊技术的粒子群优化多阈值图像分割算法。FCM聚类算法是一种局部搜索算法,对初始值较为敏感,容易陷入局部极小值而不能得到全局最优解。PSO算法是一种基于群体的具有全局寻优能力的优化方法。将FCM聚类算法和PSO算法结合起来,将FCM聚类算法的聚类准则函数作为PSO算法中的粒子适应度函数。仿真实验表明新算法在最大熵评判准则下能够得到最优阈值。 相似文献
9.
基于改进粒子群算法的多阈值图像分割 总被引:1,自引:0,他引:1
提出了一种改进的粒子群算法,在初始化种群时采用相对基学习原理,以获得较优的初始候选解;在后期迭代过程中引入扩张模型,使粒子不易陷入局部极小值点,并将其用于多阈值图像分割。由最大熵阈值法得到所要优化的目标函数,用改进的粒子群算法对其进行优化,使其能够准确并迅速的得到分割的最佳阈值组合,并用该阈值组合对图像进行分割。将此分割结果与遗传算法的多阈值分割结果相比较可以看出,该算法可更为准确快速的实现图像分割。 相似文献
10.
基于粒子群优化算法的最佳熵阈值图像分割 总被引:1,自引:0,他引:1
研究图像的空间信息和灰度的信息图像分割,从中提取感兴趣的目标.针对传统阈值算法虽然考虑了图像的空间信息,但是由于解空间维数增加,搜索范围增大,导致了计算时间延长,求解最优阈值的速度较低,同时传统二维熵的计算中只考虑了像素的概率,忽略了灰度的概率,导致分割不准确.为了充分利用灰度图像的灰度信息和空间信息,提高分割精确度和最优阈值的求解速度,提出一种基于粒子群算法的阈值分割方法(PSO-SDAIVE算法).算法对传统的二维直方图进行改进,生成差值属性灰度直方图,同时对灰度均值和二维熵的计算进行改进,生成空间差值属性信息值熵(SDAIVE),最后用粒子群算法来搜索SDAIVE的最大值.对头部CT图像进行分割进行了仿真,实验结果表明,能够对图像进行准确的分割,而且运行时间明显较短,证明粒子群优化的图像分割算法是可行和有效的. 相似文献
11.
12.
13.
针对传统二维Otsu门限分割方法中滤噪和小目标保持性能的不足,提出了一种基于自适应加权窗的二维Otsu门限分割的新方法。新方法对二维Otsu的部域窗口设置方法做了改进,使用中心点的局部平稳特征来自适应地确定下一邻域窗口的尺寸大小,然后利用粒子群算法来加快门限的计算速度,从而提高门限分割的性能。实验结果表明:与目前广泛使用的一维Otsu、二维Otsu方法以及直线型门限二维Otsu方法相比,新方法有着更好的门限分割效果,并且有更好的噪声抑制和目标保持效果。 相似文献
14.
基于谱聚类的多闭值图像分割方法 总被引:4,自引:4,他引:0
阈值法是图像分割的一种重要方法,在图像处理与目标识别中广为应用。因此,如何确定阈值是图像分割的关键。提出了一种新的图像阈值分割方法,即通过采用新的相似度函数的谱聚类算法(Dcut)确定图像阈值。采用基于灰度级的权值矩阵代替常用的基于图像像素级的权值矩阵描述图像像素的关系,因而算法需要的存储空间及实现的复杂性与其它基于图的图像分割方法相比大大减少。实验表明,该方法分割图像的时间少,且能够单阈值和多阈值分割图像,与现有的阈值分割方法相比,其具有更为优越的分割性能。 相似文献
15.
一种混沌粒子群嵌入优化算法及其仿真 总被引:1,自引:0,他引:1
为克服混沌粒子群优化(CPSO)算法由于采用随机数作为算法参数而不能保证种群多样性和优化遍历性的缺陷,通过将混沌变量嵌入到常规粒子群优化算法(PSO)中,使PSO算法中的惯性权值和随机数用混沌随机序列来替代,提出了一种新的混沌粒子群嵌入优化算法(CEPSO),以充分利用混沌运动的随机性、遍历性克服粒子群优化算法容易陷入局部最优的缺点.通过复杂多维函数的寻优测试,验证了本算法的有效性,并将仿真结果与混沌粒子群优化算法进行比较,证明了CEPSO算法更具有较强的全局搜索能力和收敛速度. 相似文献
16.
在对微粒群优化算法PSO分析的基础上,提出了矢量微粒群优化算法VPSO。该算法通过矢量运算方法来定义微粒的运动,从而达到寻找最优解的目的。将VPSO和PSO分别用于常用测试函数的优化求解,结果表明:VPSO的优化性能明屁优于PSO。基于VPSO构造的矢量微粒群神经网络(VPSONN)在丙烯腈收率软测量建模的应用中表明:基于VPSONN的丙烯腈收率软测量模型具有较高的精度,应用前景广阔。 相似文献
17.
18.
论文提出了一种新的图象分类算法--基于微粒群的图象分类算法.将此算法和K均值聚类算法分别应用于MRI人脑图象的分类,并进行了比较.实验结果表明:基于微粒群的图象分类算法具有较好的全局收敛性,不仅能有效克服K均值算法易陷入局部极小值的缺点,而且全局收敛性能优于K均值算法. 相似文献
19.
基于粒子群优化算法的最佳熵阈值图像分割 总被引:14,自引:6,他引:14
图像分割是自动目标识别的关键和首要步骤。群智能作为一类新兴的演化计算技术已被越来越多的研究者关注。论文研究将群智能中的粒子群优化算法应用到图像分割中,提出了一种新的图像分割算法。新方法基于最佳熵阈值分割技术,用粒子群优化算法自适应选取分割阈值,基于Bayes定理和随机状态转移过程对新算法收敛性的分析表明,新方法能以概率1找到图像的最佳熵阈值。在仿真实验中,针对基准图像和SAR图像分割问题,将遗传算法与粒子群优化算法分别独立运行10次,对10次得到的阈值以及均值、方差进行了比较,并将运行时间作为算法复杂度的评价指标。统计结果显示,论文算法不仅能够对图像进行准确的分割,而且运行时间明显较短。仿真结果表明,基于粒子群优化的图像分割算法是可行的、有效的。 相似文献