首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Constitutive surfaces are indispensable for investigation of the behavior of soils. Saturated and unsaturated soils coexist in most engineering problems and it is meaningful to develop constitutive surfaces covering both saturated and unsaturated conditions which help to investigate the behavior for both saturated and unsaturated soils in a unified way. At present, the methodologies used for saturated and unsaturated soils are different and few researchers consider the constitutive surfaces for saturated soils. For unsaturated soils, the suction-controlled triaxial tests are usually laborious, time consuming, costly, and may not justify routine engineering projects. This paper discusses the role of constitutive surfaces in soil mechanics and presents an improved approach over existing interpolation methods to construct the constitutive surfaces for saturated and unsaturated conditions for a stable-structured soil using simple laboratory tests.  相似文献   

2.
This study aims at investigating the mechanical behavior and the changes in fabric at various stages of loading and wetting of an artificial cemented highly collapsible geomaterial. The required metastable structure of a collapsible soil was produced by adding particles of expanded polystyrene to a soil-cement mixture. This technique is shown to reproduce main features inherently attributed to collapsible soils under idealized conditions where the effects of void ratio and degree of cementation can be properly isolated and accounted for. Collapse potential was evaluated on samples with and without cementation. From the observed behavior it was possible to identify the initial void ratio, cementation level, initial suction, and stress path as factors controlling the collapse potential of soils.  相似文献   

3.
Over the past six decades, significant attention has been paid to the elastoplastic behavior of unsaturated soils. In the past two decades alone, elastoplastic theory for unsaturated soils has been established and experimental techniques for measuring the elastoplastic behavior of unsaturated soils have become more sophisticated. However, less effort has been directed at developing the best strategy for constitutive modeling of unsaturated soils. At present, there is no standard method for developing constitutive models for unsaturated soils from experimental data, and owing to the extreme complexity of unsaturated soil behavior, there are limitations in the existing modeling methods. If these limitations are not recognized, misleading results in the constitutive modeling of unsaturated soil behavior may occur. This paper discusses the origins of and possible solutions to these limitations. Experimental data from the recent literature are used to demonstrate the use of existing methods for the constitutive modeling of unsaturated soils and potential associated problems. A modified state-surface approach (MSSA), recently proposed to model the elastoplastic behavior of unsaturated soils under isotropic conditions, was applied to overcome the limitations and develop a constitutive model that can best represent the behavior of unsaturated soil. A comparison of the proposed method and existing methods is discussed, and from this discussion, the capability and effectiveness of the proposed method are evaluated.  相似文献   

4.
This paper describes a numerical study of drained pressuremeter tests in sand using a one-dimensional finite-element method in conjunction with an advanced soil model MIT-S1, and input parameters corresponding to Toyoura sand. This soil model is capable of describing realistically the transitions in peak shear strength parameters of cohesionless soils that occur due to changes void ratio and confining pressure. The predicted peak shear strengths can be normalized, at least approximately, by introducing a state parameter that references the initial (preshear) void ratio to the value occurring at large strain critical state conditions at the same mean effective stress. The numerical analyses idealize the pressuremeter test as the expansion of a cylindrical cavity and ignore disturbance effects caused by probe insertion. This idealization is relevant to self-boring pressuremeter tests. Results confirm that there is a linear correlation between the in situ (i.e., preshear) state parameter of the soil and the gradient of the log pressure-cavity strain expansion, as first suggested by Yu in 1994 using a much simpler soil model. Indeed, the linear coefficients derived for Toyoura sand differ only slightly from those obtained previously by Yu for six other sands.  相似文献   

5.
Nonlinear shear modulus degradation characteristics are of interest in many geotechnical engineering applications, such as ground deformation caused by seismic shaking and deep excavations in clay, weathered rock, and stabilized soil. This paper presents an approach to derive the secant shear modulus degradation characteristics from in situ pressuremeter tests, which is based on a digital filter algorithm. The algorithm is described, and data preparation procedures are presented. Use of the algorithm is illustrated by means of pressuremeter data for soils stabilized with deep mixing methods on the Boston central artery/tunnel (CA/T). The nonlinear secant shear modulus degradation characteristics from the digital filter approach are shown to be in good agreement with those from the curve fitting and transformed-strain approaches. They also compare favorably with the results of other in situ and laboratory tests performed in conjunction with the CA/T stabilized soils. The algorithm is implemented by a 26-line MATLAB code in an appendix of the paper.  相似文献   

6.
In this paper, we investigate the behavior of elastic–plastic specimens during testing in a triaxial apparatus. In particular, an investigation of the influence of a number of imperfections on the observed behavior of a specimen is performed. To this end, we present influences of end platen friction, end platen inclinations, and the shape of specimen on what we broadly understand by “constitutive behavior.” We investigate the issues related to the constitutive as opposed to boundary value behavior or elastic–plastic specimens. We present a number of examples to illustrate the differences between different types of response, which are usually, and wrongly, just called the constitutive behavior.  相似文献   

7.
Hysteresis of Capillary Stress in Unsaturated Granular Soil   总被引:4,自引:0,他引:4  
Constitutive relationships among water content, matric suction, and capillary stress in unsaturated granular soils are modeled using a theoretical approach based on the changing geometry of interparticle pore water menisci. A series of equations is developed to describe the net force among particles attributable to the combined effects of negative pore water pressure and surface tension for spherical grains arranged in simple-cubic or tetrahedral packing order. The contact angle at the liquid–solid interface is considered as a variable to evaluate hysteretic behavior in the soil–water characteristic curve, the effective stress parameter χ, and capillary stress. Varying the contact angle from 0 to 40° to simulate drying and wetting processes, respectively, is shown to have an appreciable impact on hysteresis in the constitutive behavior of the modeled soils. A boundary between regimes of positive and negative pore water pressure is identified as a function of water content and contact angle. Results from the analysis are of practical importance in understanding the behavior of unsaturated soils undergoing natural wetting and drying processes, such as infiltration, drainage, and evaporation.  相似文献   

8.
Weathered soils are used extensively as fill materials in slope construction in tropical and subtropical cities such as Hong Kong. The mechanical behavior of loose decomposed fill materials, particularly in the unsaturated state, has not often been investigated and is not yet fully understood. The objective of this study was to understand the mechanical behavior of loose unsaturated decomposed granitic soil and to study the effects of the stress state, the stress path and the soil suction on the stress–strain relationship, shear strength, volume change, and dilatancy via three series of stress path triaxial tests on both saturated and unsaturated specimens. It was found that loose and saturated decomposed granitic soil behaves like clean sands during undrained shearing. Strain-softening behavior is observed in loose saturated specimens. In unsaturated specimens sheared at a constant water content, a hardening stress–strain relationship and volumetric contractions are observed in the considered range of net mean stresses. The suction of the soil contributed little to the apparent cohesion. The angle of friction appeared to be independent of the suction. In unsaturated specimens subjected to continuous wetting (suction reduction) at a constant deviator stress, the volumetric behavior changed from dilative to contractive with increasing net mean stress and the specimen failed at a degree of saturation far below full saturation. It was revealed that the dilatancy of the unsaturated soil depends on the suction, the state, and the stress path.  相似文献   

9.
The yielding and the peak strength of an aged compacted clay were studied by conducting a series of suction-controlled triaxial tests. The test results were interpreted using the framework of intrinsic properties of reconstituted soil. The peak strength envelopes of undisturbed samples lie above those of reconstituted samples. The suction provides additional attractive forces to stabilize the soil structure, which result in the augmentation of the yield stress and peak strength envelope. The shear strength is normalized by the equivalent preconsolidation pressure (pe′) and Hvorslev surfaces are identified from undisturbed samples which expand with suction. A single peak strength envelope and Hvorslev surface will be emerged from the saturated and unsaturated (degree of saturation >80%) samples if the shear strength data are presented in terms of the average skeleton stress. The influence of the soil structure on the shear strength of the aged compacted clay may be measured by the ratio of normalized strengths at the intrinsic critical state which is about 1.26  相似文献   

10.
An implicit integration algorithm has been refined to predict the stress–strain–strength response of unsaturated soil under suction-controlled, multiaxial stress paths that are not achievable in a conventional cylindrical cell. The algorithm supports numerical analyses in a deviatoric plane by using a mixed control constitutive driver, in conjunction with a generalized Cam-Clay model that also incorporates the influence of a third stress invariant, or Lode-angle θ, within a constant-suction scheme. True triaxial data from a previously accomplished series of suction-controlled triaxial compression, triaxial extension, and simple shear tests on 10-cm cubical specimens of silty sand, were used for the tuning and validation of the refined algorithm. The elliptical Willam–Warnke surface was adopted for simulation of unsaturated soil response in three-invariant stress space. Reasonably satisfactory agreement was observed between experimental and predicted deviatoric stress versus principal strain response for different suction states, as well as between experimental and predicted strength loci in a deviatoric plane.  相似文献   

11.
Conventionally, the resilient modulus test is conducted in the laboratory under different moisture content in which matric suction is unknown during the test. To investigate the influence of the matric suction on the resilient modulus, this study integrated the suction-controlled testing system and developed a modified testing procedure for the resilient modulus test of unsaturated subgrade soils. Based on the axis-translation technique, two cohesive soils were tested to investigate the effect of matric suction on resilient modulus. In the modified testing procedure, in order to fulfill the equilibrium in matric suction, the number of load cycles at each loading sequence of the resilient modulus test (AASHTO T 292-91) needs to be increased significantly. Experimental data indicate that matric suctions measured in the specimen after consolidation and resilient modulus tests are consistent with the matric suctions deduced from the soil-water characteristic curve corresponding to the same moisture content. In general, the resilient modulus obtained by the suction-controlled resilient modulus test appears to be reasonable. The trends of resilient modulus obtained by the suction-controlled resilient modulus test are consistent with those obtained by the conventional resilient modulus test. However, the suction-controlled resilient modulus test provides better insights that can help in interpreting the test results.  相似文献   

12.
Expansive soils cause important economical losses in many arid or semiarid countries in the world. Considering the large economic impact, relatively few efforts have been devoted to develop analytical methods that may help practitioner engineers to adequately design civil infrastructure on this type of soil. A rational design method should be able to quantify the heave or subsidence of the soil associated with the suction changes during water diffusion, as well as the contact pressures on soil-structure interfaces. Accordingly, in this and in a companion paper, the problem of volume changes due to nonpermanent water flow in expansive soils is studied and applied to the case of vertical moisture barriers. In this paper, a constitutive model for expansive soils is proposed. This model is an extension of that developed by Alonso et al. in 1990, in the sense that it can take into account the behavior of expansive soils. The advanced model is evaluated by comparing the numerical results with experimental data.  相似文献   

13.
Attention is increasingly paid to the elastoplastic behavior of unsaturated soils. In the development of an elastoplastic framework for unsaturated soils, it is necessary to determine the initial shape of the yield curve and its evolution with yielding. Accordingly, correct determination of shapes of yield curves is of significant importance. Existing methods rely on use of a series of specimens with “identical” stress history to determine the initial shape of yield curve. Preparation of such specimens requires thoughtful preparation, careful instrumentation, and lengthy equilibrium time, which makes identical specimens very difficult to obtain. As a result, the yield curve obtained through the existing methods could be misleading. Hence, this paper presents a simple method to correctly and rapidly determine the shapes of the yield curves and their evolution during yielding even if the soil specimens do no have identical stress histories. In this new method, a modified state surface approach, recently proposed to model the elastoplastic behavior of unsaturated soils under isotropic conditions, was applied. It overcomes the limitations in the existing methods, and allows correct and rapid determination of the elastic and plastic hardening surfaces, and then shapes of yield curves without additional laboratory work. An example was used to demonstrate the application of the proposed method. The comparison between the proposed method and other methods was discussed from which the capability and effectiveness of the proposed method were evaluated.  相似文献   

14.
Unsaturated clays are subject to osmotic suction gradients in geoenvironmental engineering applications and it therefore becomes important to understand the effect of these chemical concentration gradients on soil-water characteristic curves (SWCCs). This paper brings out the influence of induced osmotic suction gradient on the wetting SWCCs of compacted clay specimens inundated with sodium chloride solutions/distilled water at vertical stress of 6.25 kPa in oedometer cells. The experimental results illustrate that variations in initial osmotic suction difference induce different magnitudes of osmotic induced consolidation and osmotic consolidation strains thereby impacting the wetting SWCCs and equilibrium water contents of identically compacted clay specimens. Osmotic suction induced by chemical concentration gradients between reservoir salt solution and soil-water can be treated as an equivalent net stress component, (pπ) that decreases the swelling strains of unsaturated specimens from reduction in microstructural and macrostructural swelling components. The direction of osmotic flow affects the matric SWCCs. Unsaturated specimens experiencing osmotic induced consolidation and osmotic consolidation develop lower equilibrium water content than specimens experiencing osmotic swelling during the wetting path. The findings of the study illustrate the need to incorporate the influence of osmotic suction in determination of the matric SWCCs.  相似文献   

15.
An elastoplastic pressuremeter theory for cohesive soil has been used in the design of construction, such as retaining walls, slope stability, or foundation engineering. This theory takes into account the plasticity along the vertical and horizontal planes and allows for the determination of the conventional limit pressure. We compute here the conventional limit pressure using the Plaxis program to check the validity of the theoretical results. First, we present the theory used for the interpretation of the pressuremeter test in cohesive soil and its extension to the conventional limit pressure, which is defined as the pressure at the borehole wall for a volume increase ΔV equal to the initial volume of the borehole. One of the main results is the theoretical expression of the conventional limit pressure. This volume variation is linked to a radial strain of ?1. This conventional limit pressure can be directly measured with the pressuremeter, whereas the theoretical limit pressure is expressed as an infinite expansion and cannot be directly measured. Then, we validate this theory by using finite elements, and determine the conventional limit pressure with the Tresca standard model of Plaxis, which is compared to the theoretical expression. Conclusions are drawn on the validity of this new theory which allows the measurement and the control of the shearing modulus and shear strength of the natural soil.  相似文献   

16.
This paper presents a methodology to investigate the collapse behavior of unsaturated soils using suction-monitored oedometer tests. By incorporating independent suction measurement, the oedometer apparatus is capable of following the same stress paths as in double oedometer tests, while continuously monitoring the suction. The proposed method has been used to investigate the collapse behavior of a compacted silty clay and to confirm the uniqueness of the loading-collapse surface as identified from loading and wetting paths. A new mathematical form of the yield surface within an elastoplastic framework is proposed on the basis of test results over a wide range of suctions (0 to 30,000?kPa) and net stresses (up to 7,000?kPa). The fundamental assumptions of the newer type of elastoplastic framework, which incorporate the degree of saturation within their stress variables, are evaluated, and the limitations of such models are identified. The collapse behavior of samples with different fabrics induced by differing compaction characteristics is also investigated within an elastoplastic framework. The difference in fabric, which is observed through a petrological microscope, can be presented in a quantitative way with different model parameters.  相似文献   

17.
A series of unsaturated soil triaxial tests were performed on four soils including sand, silt, and a low plasticity clay. Attempts were made to correlate unsaturated soil properties from these tests and data from the literature with soil-water characteristics curve (SWCC), soil gradation, and saturated soil properties. The feasibility of estimating unsaturated soil property functions from saturated soil properties, SWCCs and gradation data, is demonstrated. A hyperbolic model for estimation of the unsaturated soil parameter, ?b, versus matric suction is presented. Shear induced volume change behavior was also studied, and results are included in this paper. Although not correlated with soil index properties, these shear-induced volume change data are important to complete stress-deformation analyses, and represent a significant addition to the existing data base of unsaturated soil properties.  相似文献   

18.
19.
Constitutive models for geologic materials and interfaces involve a number of parameters that need to be determined from appropriate laboratory tests. Because the test behavior is influenced by a number of factors such as material variability in test specimens, initial density, mean pressure, and stress paths, the parameters determined from such tests need to be averaged or optimized. The averaging procedure is often used. However, in view of the importance of the parameters in analysis and design, it is desirable and necessary to use advanced procedures such as optimization methods so as to find their improved and realistic values. This paper presents an optimization procedure for the determination of parameters in the unified disturbed state concept constitutive models. A series of multiaxial laboratory tests on a sand under different initial mean pressures, density, and stress paths are used to evaluate the optimized parameters. The stress-strain and volume change behavior is then back-predicted using the parameters from the conventional averaging procedure and the proposed optimization procedure. The results show that the optimized parameters provide improved predictions of the test data. The optimized parameters are used in a finite element procedure to predict cyclic behavior in a boundary value problem involving a shake table test. The proposed procedure can provide a useful methodology for the optimization of parameters for a wide range of available (plasticity, creep, damage, etc.) constitutive models. It can lead to improved analysis and design of geotechnical problems, particularly while using computer (finite element) procedures.  相似文献   

20.
The behavior of Hostun RF sand on proportional strain paths at low confining pressures (20 to 100 kPa) is considered in this paper. In such paths, a constant dilation rate is imposed during shear. The usual features of pore pressure increase (contracting material) or decrease (dilating material) are here observed depending upon whether the imposed dilation rate is respectively greater or smaller than the “natural” dilation rate at failure (as measured in a drained test). Particular attention is given to the static liquefaction phenomenon, which is seen to occur for loose as well as dense sand provided the imposed dilation rate is large enough to lead to a continuous pore pressure increase during shear. Instability tests performed at low confining pressures on proportional strain paths show that the instability line is strain path dependent. It does not coincide with the peak deviator stress line in proportional strain paths tests, in general, but does coincide with the line d2W = 0 (nil second increment of total work).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号