首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We document and analyze incidents of liquefaction-induced lateral ground deformation at five sites located in the near-fault region of the 1999 Chi-Chi Taiwan earthquake. Each of the lateral spreads involved cyclic mobility of young alluvial soils towards a free face at creek channels. In each case, the lateral spreading produced relatively modest lateral displacements (approximately 10–200?cm) in parts of the spreads not immediately adjacent to channel slopes. For each site, we present displacement vectors across the spread features, which are based on mapping performed within three weeks of the earthquake. We review the results of detailed subsurface exploration conducted at each site, including cone penetration test soundings, borings with standard penetration testing, and laboratory index tests. We back-analyze the field displacements using recent empirical and semiempirical models and find that the models generally overestimate the observed ground displacements. Possible causes of the models’ overprediction bias include partial drainage of the liquefied soils during shaking, low but measurable plasticity of some of the soils’ fines fraction, and the absence of nonspread sites in the empirical databases used to develop existing empirical and semi-empirical lateral spread displacement prediction models.  相似文献   

2.
EPOLLS Model for Predicting Average Displacements on Lateral Spreads   总被引:1,自引:0,他引:1  
A new empirical method, called the EPOLLS model, is developed for predicting ground surface displacements due to liquefaction-induced lateral spreading. Lateral spreading is defined as the mostly horizontal deformation of gently sloping ground as a result of soil liquefaction. In strong earthquakes, lateral spreads often cause considerable damage. The EPOLLS (Empirical Prediction Of Liquefaction-induced Lateral Spreading) model can be used to predict the average horizontal surface displacement that can occur on a potential lateral spread. The model is presented in three parts (designated as the Regional-EPOLLS, Site-EPOLLS, and Geotechnical-EPOLLS components) that allow for progressively better predictions with the addition of more site parameters. The model consists of simple algebraic equations with four to nine parameters that represent the seismic input, site topography, and subsurface conditions. The EPOLLS model was developed from a multiple linear regression analysis of data from 71 lateral spread case studies. The EPOLLS database, regression modeling, quality of the fit, and limitations on the use of the EPOLLS model are discussed.  相似文献   

3.
This paper presents a study of liquefaction-induced lateral ground displacements along the coast of Izmit Bay during the 1999 Kocaeli (Izmit)-Turkey earthquake. The paper discusses: (1) observed ground displacements after the earthquake, (2) the results of field investigations by means of borings and in situ index tests, including standard penetration tests, static cone penetration tests, and piezocone tests, (3) analyses of expected lateral displacements using two empirical models and one semiempirical model, and (4) comparisons between observed and calculated lateral ground movements. The three models provide inconsistent predictions of observed lateral ground displacements, with one method overpredicting and two methods both overpredicting and underpredicting observed lateral ground displacements by large amounts. Thus, it appears that there is a need for improved engineering tools for prediction of small to moderately significant lateral ground displacements (lateral displacements of approximately 0.1–2.5?m) at soil sites with similar ground characteristics to the case history sites presented herein.  相似文献   

4.
The writers backanalyzed 39 well-documented liquefaction-induced lateral spreads in terms of a mobilized strength ratio, su(mob)/σvo′ using the Newmark sliding block method. Based on the inverse analyses results, we found that the backcalculated strength ratios mobilized during lateral spreads can be directly correlated to normalized cone penetration test tip resistance and standard penetration test blow count. Remarkably, Newmark analysis-based strength ratios mobilized during these lateral spreads essentially coincide with liquefied strength ratios backcalculated from liquefaction flow failures. The mobilized strength ratios appear to be independent of the magnitude of lateral displacement (at least for displacements greater than 15?cm) and the strength of shaking (in terms of peak ground acceleration). Furthermore, the mobilized strength ratios backcalculated from these cases appear to be consistent for a given depositional environment and do not appear to be severely impacted by potential water layer formation.  相似文献   

5.
This paper presents experimental results of 1-g shaking table model tests on a 3×3 pile group behind a sheet-pile quay wall. The main purpose was to understand the mechanisms of liquefaction-induced large ground deformation and the behavior of the pile group subjected to the lateral soil displacement. The sheet-pile quay wall was employed to trigger the liquefaction-induced large deformation in the backfill, and a study was made of the effect of several parameters such as soil density, amplitude and frequency of input motion, pile head fixity, and superstructure on the magnitude of soil lateral displacement and the maximum lateral force of liquefied soil. Furthermore, distribution of the maximum lateral force within the group pile was thoroughly studied. It was found that the force varies depending on the position of individual piles in the group. To evaluate the contribution of each pile in the total lateral force, a new two-dimensional parameter that is called contribution index was introduced and recommended values for each pile were suggested. Finally, it is concluded that displacement and velocity of soil are the most important parameters that affect the distribution of the lateral forces in the group pile, and these two parameters are highly dependent on the configuration of the ground (geometry).  相似文献   

6.
Numerical Parametric Study of Piezocone Penetration Test in Clays   总被引:2,自引:0,他引:2  
This paper presents a numerical model for the simulation of the piezocone penetration test that is used to carry out a parametric study of the piezocone penetration test in cohesive soils. The piezocone penetration is numerically simulated using an axisymmetric elasto-plastic large deformation finite-element analysis code. The numerical simulation is accomplished in two stages. First, the piezocone is expanded radially from an initial small radius (0.1ro) to the piezocone radius, ro, at the specified depth. Second, the continuous penetration of the piezocone is simulated by applying incremental vertical displacements of the nodes representing the piezocone boundary. The constraint approach is used to model the soil-piezocone interface friction. The Mohr-Coulomb frictional criterion is used to define the sliding potential of the nodes. The main objective of this paper is to present the numerical model and to investigate the effect of the lateral and vertical stresses and the overconsolidation ratio on the cone tip resistance and the developed excess pore pressure around the piezocone. The variation of the horizontal and vertical hydraulic conductivity coefficients on the developed spatial excess pore pressure and its dissipation are also investigated. The results of the numerical study are also compared with the miniature piezocone penetration tests in cohesive soil specimens conducted at the Louisiana State University Calibration Chamber. Results of this study are in good agreement with the measured values.  相似文献   

7.
Liquefaction and Soil Failure During 1994 Northridge Earthquake   总被引:2,自引:0,他引:2  
The 1994 Northridge, Calif., earthquake caused widespread permanent ground deformation on the gently sloping alluvial fan surface of the San Fernando Valley. The ground cracks and distributed deformation damaged both pipelines and surface structures. To evaluate the mechanism of soil failure, detailed subsurface investigations were conducted at four sites. Three sites are underlain by saturated sandy silts with low standard penetration test and cone penetration test values. These soils are similar to those that liquefied during the 1971 San Fernando earthquake, and are shown by widely used empirical relationships to be susceptible to liquefaction. The remaining site is underlain by saturated clay whose undrained shear strength is approximately half the value of the earthquake-induced shear stress at this location. This study demonstrates that the heterogeneous nature of alluvial fan sediments in combination with variations in the ground-water table can be responsible for complex patterns of permanent ground deformation. It may also help to explain some of the spatial variability of strong ground motion observed during the 1994 earthquake.  相似文献   

8.
Laterally spreading nonliquefied crusts can exert large loads on pile foundations causing major damage to structures. While monotonic load tests of pile caps indicate that full passive resistance may be mobilized by displacements on the order of 1–7% of the pile cap height, dynamic centrifuge model tests show that much larger relative displacements may be required to mobilize the full passive load from a laterally spreading crust onto a pile group. The centrifuge models contained six-pile groups embedded in a gently sloping soil profile with a nonliquefied crust over liquefiable loose sand over dense sand. The nonliquefied crust layer spread downslope on top of the liquefied sand layer, and failed in the passive mode against the pile foundations. The dynamic trace of lateral load versus relative displacement between the “free-field” crust and pile cap is nonlinear and hysteretic, and depends on the cyclic mobility of the underlying liquefiable sand, ground motion characteristics, and cyclic degradation and cracking of the nonliquefied crust. Analytical models are derived to explain a mechanism by which liquefaction of the underlying sand layer causes the soil-to-pile-cap interaction stresses to be distributed through a larger zone of influence in the crust, thereby contributing to the softer load transfer behavior. The analytical models distinguish between structural loading and lateral spreading conditions. Load transfer relations obtained from the two analytical models reasonably envelope the responses observed in the centrifuge tests.  相似文献   

9.
Undrained Lateral Pile Response in Sloping Ground   总被引:1,自引:0,他引:1  
Three-dimensional finite element analyses were performed to study the behavior of piles in sloping ground under undrained lateral loading conditions. Piles of different diameter and length in sloping cohesive soils of different undrained shear strength and several ground slopes were considered. Based on the results of the finite element analyses, analytical formulations are derived for the ultimate load per unit length and the initial stiffness of hyperbolic p-y curves. New p-y criteria for static loading of piles in clay are proposed, which take into account the inclination of the slope and the adhesion of the pile-slope interface. These curves are used through a commercial subgrade reaction computer code to parametrically analyze the effect of slope inclination and pile adhesion on lateral displacements and bending moments. To validate the proposed p-y curves, a number of well documented lateral load tests are analyzed. Remarkable agreement is obtained between predicted and measured responses for a wide range of soil undrained shear strength and pile diameter, length, and stiffness.  相似文献   

10.
Previous research indicates that if layered sand deposits are liquefied during earthquakes, water films are likely to develop beneath less permeable sublayers and lead to the destabilization of sloping ground. In Niigata City, large lateral flow displacements were reported in almost flat areas during the 1964 Niigata earthquake. The involvement of water films in lateral flow failure during the earthquake is examined in this research based on site investigation data. Soil profiles in the investigated areas estimated from many borehole logs indicate that continuous or partially continuous sublayers of fine soil that cap liquefiable loose sand exist. Elevation contours of 0.1 m increments are drawn based on an in situ leveling survey and local maps. The ground slopes obtained are found to be closely related to flow displacements evaluated in previous research, indicating that a gentle slope of less than 1% results in displacement of several meters. This strongly suggests that water films with literally no shear resistance formed beneath fine soil sublayers were highly responsible for the large lateral flow displacements in these areas during the Niigata earthquake.  相似文献   

11.
Mechanics of Lateral Spreading Observed in a Full-Scale Shake Test   总被引:1,自引:0,他引:1  
This paper examines in detail the mechanics of lateral spreading observed in a full-scale test of a sloping saturated fine sand deposit, representative of liquefiable, young alluvial and hydraulic fill sands in the field. The test was conducted using a 6-m tall inclined laminar box shaken at the base. At the end of shaking, nearly the whole deposit was liquefied, and the ground surface displacement had reached 32 cm. The presented analysis of lateral spreading mechanics utilizes a unique set of lateral displacement results, DH, from three independent techniques. One of these techniques—motion tracking analysis of the experiment video recording—is especially useful as it produced DH time histories for all laminar box rings and a complete picture of the lateral spreading initiation with an unprecedented degree of resolution in time and space. A systematic study of the data identifies the progressive stages of initiation and accumulation of lateral spreading, lateral spread contribution of various depth ranges and sliding zones, their relation to the simultaneous pore pressure buildup, and the soil shear strength response during sliding.  相似文献   

12.
Liquefaction-induced ground deformation has caused major damage to bridge and wharf structures in past earthquakes. Large lateral ground displacements may induce significant forces in the foundation and superstructure, which may lead to severe damage or even collapse. A performance-based earthquake engineering (PBEE) approach can provide an objective assessment of the likely seismic performance, so that agencies can evaluate bridge or wharf structures, compare retrofit strategies, and rank them within their overall system. In this paper, a probabilistic PBEE design procedure that incorporates findings from recent research on this problem is presented. The proposed approach can provide answers in terms that are meaningful to owners, such as expected repair costs and downtimes. The methodology is validated through its application to a well-documented case history. Results show that the proposed approach provides a good estimate of the seismic performance of pile-supported structures at sites with liquefaction-induced lateral displacement.  相似文献   

13.
Seismically induced settlement of buildings with shallow foundations on liquefiable soils has resulted in significant damage in recent earthquakes. Engineers still largely estimate seismic building settlement using procedures developed to calculate postliquefaction reconsolidation settlement in the free-field. A series of centrifuge experiments involving buildings situated atop a layered soil deposit have been performed to identify the mechanisms involved in liquefaction-induced building settlement. Previous studies of this problem have identified important factors including shaking intensity, the liquefiable soil’s relative density and thickness, and the building’s weight and width. Centrifuge test results indicate that building settlement is not proportional to the thickness of the liquefiable layer and that most of this settlement occurs during earthquake strong shaking. Building-induced shear deformations combined with localized volumetric strains during partially drained cyclic loading are the dominant mechanisms. The development of high excess pore pressures, localized drainage in response to the high transient hydraulic gradients, and earthquake-induced ratcheting of the buildings into the softened soil are important effects that should be captured in design procedures that estimate liquefaction-induced building settlement.  相似文献   

14.
Monotonic, static beam on nonlinear Winkler foundation (BNWF) methods are used to analyze a suite of dynamic centrifuge model tests involving pile group foundations embedded in a mildly sloping soil profile that develops liquefaction-induced lateral spreading during earthquake shaking. A single set of recommended design guidelines was used for a baseline set of analyses. When lateral spreading demands were modeled by imposing free-field soil displacements to the free ends of the soil springs (BNWF_SD), bending moments were predicted within ?8% to +69 (16th to 84th percentile values) and pile cap displacements were predicted within ?6 to +38%, with the accuracy being similar for small, medium, and large motions. When lateral spreading demands were modeled by imposing limit pressures directly to the pile nodes (BNWF_LP), bending moments and cap displacements were greatly overpredicted for small and medium motions where the lateral spreading displacements were not large enough to mobilize limit pressures, and pile cap displacements were greatly underpredicted for large motions. The effects of various parameter relations and alternative design guidelines on the accuracy of the BNWF analyses were evaluated. Sources of bias and dispersion in the BNWF predictions and the issues of greatest importance to foundation performance are discussed. The results of these comparisons indicate that certain guidelines and assumptions that are common in engineering design can produce significantly conservative or unconservative BNWF predictions, whereas the guidelines recommended herein can produce reasonably accurate predictions.  相似文献   

15.
The penetration resistance of a cylindrical T-bar penetrometer in soft clay is affected by features such as anisotropy, high strain rates, and gradual strain-softening during passage of the T-bar. In order to evaluate these effects, a detailed numerical study has been undertaken, comprising: (1) finite-element analysis; and (2) a strain path approach within the upper bound plasticity mechanism. These studies showed that the T-bar factor is relatively insensitive to the degree of strength anisotropy, provided the penetration resistance is normalized by the average shear strength. Strain rates were found to be six or seven orders of magnitude greater than typical laboratory testing rates, and about three orders of magnitude higher than in a standard vane test. However, the effect of high strain rates is partly compensated by remolding of the soil, where average strains of 400% are imposed on the soil. Charts are presented showing how the separate effects of high strain rates and partial softening may be combined to derive a T-bar factor for a given soil. The paper concludes with a discussion of the measurement of remolded shear strength using cyclic T-bar tests, and interpretation of the T-bar resistance in fully remolded soil.  相似文献   

16.
A procedure is proposed to evaluate the triggering of liquefaction in ground subjected to a static shear stress, i.e., sloping ground, using the yield strength ratio, su(yield)/σv0′. Thirty liquefaction flow failures were back analyzed to evaluate shear strengths and strength ratios mobilized at the triggering of liquefaction. Strength ratios mobilized during the static liquefaction flow failures ranged from approximately 0.24 to 0.30 and are correlated to corrected cone and standard penetration resistances. These yield strength ratios and previously published liquefied strength ratios are used to develop a comprehensive liquefaction analysis for ground subjected to a static shear stress. This analysis addresses: (1) liquefaction susceptibility; (2) liquefaction triggering; and (3) post-triggering/flow failure stability. In particular, step (2) uses the yield strength ratio back-calculated from flow failure case histories and the cyclic stress method to incorporate seismic loading.  相似文献   

17.
This study focuses on the phenomenon of ground instability causing mobile cranes to overturn. Four outriggers usually support a mobile crane in order to restrict pitching during hoisting operations. Nevertheless, the crane may become quite unstable if the outriggers should happen to sink into the bearing ground. In this paper, various types of analysis, including experiments, were performed in order to investigate the influence of ground penetration by outriggers on the stability of mobile cranes. Through study of the results of experimentation and simulation, it has been clarified that mobile cranes become highly unstable as a result of rapid penetration. It was found that an index of relative instability had a linear relationship to the common logarithm of an index for brittle failure as derived from the load–settlement curve for ground penetration. Finally, a method of evaluating the risk of mobile-crane overturning is proposed by using the maximum value of both the supporting surface’s failure risk and the kinetic risk due to ground penetration.  相似文献   

18.
Prediction of the rotational displacements, induced by earthquake is a key aspect of the seismic design of retaining walls. In this paper, the pseudodynamic method is used to compute rotational displacements of the retaining wall supporting cohesionless backfill under seismic loading. The proposed method considers time, phase difference, and effect of amplification in shear and primary waves propagating through the backfill and the retaining wall. The influence of ground motion characteristics on rotational displacement of the wall is evaluated. Also the effects of variation of parameters like wall friction angle, soil friction angle, amplification factor, shear wave velocity, primary wave velocity, period of lateral shaking, horizontal, and vertical seismic accelerations on the rotational displacements are studied. Results are provided in graphical form with a comparison to the available pseudostatic result to validate the proposed theory. Present results give higher values of rotational displacements of the wall when compared with the available results by pseudostatic analysis.  相似文献   

19.
An elastoplastic, finite-strain, coupled theory of mixtures in an updated Lagrangian reference frame is applied to the piezocone penetration test to estimate the hydraulic conductivity of the soil via analysis of the steady-state excess pore pressure generated during piezocone penetration. The results of this approach were compared with piezocone penetration test data. It showed that reliable hydraulic conductivities can be estimated conveniently without performing pore pressure dissipation tests. This study also shows that the change in the dimensionless excess pore pressure (excess pore pressure is normalized by the effective overburden pressure) at the cone tip is almost constant when the dimensionless hydraulic conductivity (hydraulic conductivity is normalized by the penetration speed and cone radius, hereafter called DLHC) is less than 10?7 or greater than 10?4. It is also shown that the drainage condition around the cone tip is close to a fully undrained condition when the DLHC of the soil is less than 10?7, while it is close to a fully drained condition when the DLHC of the soil is greater than 10?4.  相似文献   

20.
Sliding block displacements often are used to evaluate the potential for ground failure due to slope instability. The procedures used to assess sliding block displacement typically use deterministic or pseudoprobabilistic approaches, in which the uncertainties in the expected ground motion and resulting displacement are either ignored or not treated in a rigorous manner. Thus, there is no concept of the actual hazard associated with the computed displacement. This paper presents a fully probabilistic framework for assessing sliding block displacements. The product of this analysis is a displacement hazard curve, which provides the annual rate of exceedance, λ, for a range of displacement levels. The framework considers two procedures that will yield a displacement hazard curve: (1) a scalar hazard approach that utilizes a single ground motion parameter and its associated hazard curve to compute permanent displacements; and (2) a vector hazard approach that predicts displacements based on two (or more) ground motion parameters and the correlation between these parameters. The vector approach reduces the displacement hazard significantly, as compared with the scalar approach, because of the reduction in the variability in the displacement prediction. Comparison of the fully probabilistic approach with an approach using probabilistically derived ground motions reveals that using a ground motion for a given hazard level does not produce a displacement level with the same hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号