首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A novel anionic Gemini surfactant containing oxygen atoms in the linking group was designed and synthesized. The surface properties of the anionic Gemini surfactant were investigated by measuring the surface tension and conductivity. The Gemini surfactant showed a low critical micelle concentration value, which decreases with increasing concentration of NaCl. The calculated physicochemical properties indicate that oxygen atoms in the linking group interact with water molecules stronger than CH2.  相似文献   

2.
A new synthetic route to a mild surfactant disodium lauryl glucoside sulfosuccinate (AG‐SS) containing two hydrophilic groups is described and its measured physicochemical properties reported. AG‐SS was synthesized from lauryl glucoside reacted with maleic acid anhydride, and then sulfonated with sodium sulfite. The structure and composition of the product were defined by Fourier transform infrared spectroscopy and liquid chromatography–mass spectrometry. The surface activity measurement showed that the critical micelle concentration (CMC) and that the surface tension at CMC (γCMC) of AG‐SS were 2.59 × 10?4 mol/L and 35.21 mN/m at 25 °C, respectively. AG‐SS exhibited excellent water solubility eliminating the disadvantage of lauryl glucoside; its foaming ability was also remarkable.  相似文献   

3.
The effect of co‐solvent N‐methylacetamide (NMA) (0.035, 0.046, 0.127, and 0.258 mol kg?1) on the micellization behaviour of anionic surfactant sodium dodecylsulphate (SDS) (3.21–10.35 mmol kg?1) and cationic surfactant cetyltrimethylammonium bromide (CTAB) (0.19–3.72 mmol kg?1) in aqueous solution was explored by employing conductivity measurements at different temperatures (298.15–313.15 K). The critical micelle concentration (CMC) values for SDS and CTAB in aqueous solutions of NMA were determined from the conductivity versus surfactant concentration plots. The variations in the CMC values of SDS with NMA concentration are in striking contrast to those observed in the case of CTAB. The various relevant thermodynamic parameters of micellization, viz. standard enthalpy change, ΔHmo, standard entropy change, ΔSmo, and standard Gibbs free energy change, ΔGmo, were determined using the temperature variation of the CMC values and counterion binding. The results not only relate these thermodynamic parameters to the consequences of intermolecular interactions but are also able to differentiate between SDS–water–NMA and CTAB–water–NMA systems in terms of contributions from head groups as well as alkyl chains of surfactants.  相似文献   

4.
An anionic gemini surfactant was synthesized under microwave irradiation conditions. The optimum reaction conditions were obtained by the reaction of maleic anhydride, glycol, isooctyl alcohol and sodium sulfite. The first step esterification reaction was carried out at 90 °C and 100 W microwave power for 20 min with a ratio a n maleic anhydride:n glycol = 2.1:1, and 1.0 wt% of catalyst. The second step esterification reaction was carried out at 80 °C for 25 min and 100 W microwave power. Optimum sulfonation was carried out with n sodium sulfite:n glycol bismaleic anhydride bisester = 2.25:1 and 1.5% catalyst for 25 min at 60 °C. It is found that microwave-assisted synthesis is an efficient means of preparation of this anionic gemini surfactant with shorter reaction times and higher yields. The title compound structure was confirmed by IR. The critical micelle concentration of the title compound is 6.2 × 10−4 mol L−1, γCMC is 25.7 mN m−1, and benzene emulsion persistence was 2 days.  相似文献   

5.
Allyl dimethyl dehydroabietyl ammonium chloride (ADMDHA), as a cationic quaternary ammonium polymerizable antibacterial surfactant, was synthesized from dehydroabietylamine and 3‐chloropropene. The structure of ADMDHA was characterized by FT‐IR, NMR, and elemental analysis. The critical micelle concentration (CMC) of ADMDHA and the surface tension at the CMC (γCMC) in aqueous solution were about 2.51 × 10?4 mol L?1 and 28.5 mN m?1 at 25 °C, respectively. The emulsion consisting of benzene and water with ADMDHA as an emulsifier maintained its stability for 2 days. Meanwhile, the antimicrobial activities of ADMDHA against Escherichia aerogenes and Pseudomonas aeruginosa were much stronger than those of ampicillin sodium and bromogeramine against the same bacteria.  相似文献   

6.
A cationic Gemini surfactant with a benzene ring (abbreviated as C14‐CGB) was synthesized in 2 steps with aniline, epichlorohydrin, and N,N‐dimethyltetradecylamine as starting materials. This product was characterized using mass spectroscopy and nuclear magnetic resonance (1H NMR). The critical micelle concentration (CMC) and surface tension (γcmc) of C14‐CGB were measured from 298 to 313 K and thermodynamic parameters of micellization were calculated. The results showed that the CMC and γcmc were 1.269 × 10?3 mol L?1 and 38.33 mN m?1 at 298 K, respectively. Moreover, upon increasing the temperature, the CMC increases, γcmc decreases, the maximum surface adsorption capacity (Γmax) decreases, and the minimum molecular area (Amin) increases. The emulsified asphalt test showed that C14‐CGB is a slow‐breaking asphalt emulsifier exhibiting excellent emulsifying ability.  相似文献   

7.
New amido‐amine‐based cationic gemini surfactants with flexible and rigid spacers and different hydrophobic tails were synthesized and characterized. These gemini surfactants were prepared by a modified procedure through amidation of long chain carboxylic acids using 3‐(dimethylamino)‐1‐propylamine followed by treatment with halohydrocarbons. The effect of the trans and cis conformation of the spacer double bond was investigated by means of critical micelle concentration, surface tension reduction, and thermal stability. The short‐term thermal stability of the gemini surfactants was assessed using thermogravimetric analysis (TGA) and the long‐term thermal stability was examined by a unique approach based on structure characterization techniques including NMR (1H and 13C) and FTIR analysis. TGA results demonstrated excellent short‐term thermal stability since no structure degradation was observed up to 200 °C. Structural characterization revealed impressive long‐term thermal stability of the gemini surfactants with no structure decomposition after exposing them to 90 °C for 10 days. The critical micelle concentration of gemini surfactants was found to be in the range of 0.77 × 10?4–3.61 × 10?4 mol L?1 and corresponding surface tension (γCMC) ranged from 30.34 to 38.12 mN m?1. The surfactant with the trans conformation of spacer double bond showed better surface properties compared to the surfactant with the cis conformation of spacer double bond. Similarly, increasing surfactant tail length and spacer length resulted in decreasing CMC values. Moreover, bromide counterion showed improved surface properties compared to chloride counterion.  相似文献   

8.
In the present work, the influences of different types of electrolytes on interfacial dilational properties of anionic surfactant sodium 4,5-diheptyl-2-propylbenzene sulfonate 377 and asymmetrical anionic Gemini surfactant C12COONa-p-C9SO3Na in the absence or presence of 1500 ppm partly hydrolyzed polyacrylamide were studied at decane–water interface, respectively, by means of interfacial tension relaxation measurements. The decay curves of interfacial tension were fitted by the summation of a number of exponential functions. The dilational elasticity (?r) and dilational viscosity component (?i) were calculated by Fourier transform and displayed as Cole–Cole plots (plotting ?i or ?i/?0 as a function of ?r or ?r/?0 respectively). The experimental results show that only single reorientation process dominates the interfacial properties in the presence of any electrolyte for 1 × 10−6 mol L−1 377 solution, resulting form the more compacted film by electrostatic screening. On the other hand, the contribution of reorientation process at higher frequency decrease after the addition of NaCl and there exists no pure reorientation process in the presence of CaCl2 or MgCl2 for Gemini surfactant because of the slight increase of interfacial concentration due to larger molecular size and strong steric hindrance between alkyl chains. The addition of polymer can significantly modify the dilational properties of adsorbed surfactant layer due to the formation of mixed adsorption film through hydrophobic interaction between polymer chain and alkyl chain of surfactant molecule. The normalized Cole–Cole plots of surfactant-polymer films with different types of electrolytes show the similar characteristic in general and no pure reorientation process can be observed in any case.  相似文献   

9.
The interaction of two Indian natural dyes, namely madder (Rubia cordifolia) and mallow (Punica granatum), with cationic surfactant cetyl trimethyl ammonium bromide and anionic surfactant sodium lauryl sulphate, has been studied. Spectrophotometric data showed a strong interaction between the natural dyes and the surfactants. The critical micelle concentration of the surfactants, determined by measurement of specific conductance and surface tension, was found to decrease on the addition of natural dyes in an aqueous solution of surfactants. The thermodynamic and surface parameters for the interaction have been evaluated.  相似文献   

10.
The linear alkylated diphenylmethane sulfonate (C12‐DSDM) was synthesized by a four‐step reaction with lauric acid, diphenylmethane and chlorosulfonic acid as raw materials. The structure of the final product was characterized by MS. The air–liquid surface tensions at various temperatures and salt solutions (NaCl) were measured by using the drop‐volume technique and the thermodynamic parameters of the micellization were calculated. The results show that the critical micelle concentration (CMC) and γCMC of the surfactant are 1.452 mmol L?1 and 38.49 mN m?1 at 298 K. With an increase in temperature, the CMC gradually increases, the γCMC and the maximum surface adsorption capacity Γmax decrease. The free energy of micelle formation is negative (?51.2 to ?60.5 kJ mol?1).  相似文献   

11.
Interactions of a widely used commercial anionic surfactant, linear alkylbenzene sulfonate, with zein protein, a water insoluble protein, was studied to better understand the effects of the counterion on skin irritation of anionic surfactants. The neutralizing ions used were inorganics: Li+, Na+, K+, Mg2+, and NH4+ and organics: monoethanolamine, diethanolamine, and triethanolamine. According to the results obtained, the influence of counterions of anionic surfactants on zein solubilization is significant; with magnesium counterions showing lower zein solubilization. In aqueous solutions, zein solubilization by anionic surfactant is related to the effect of the counterion on the critical micelle concentration of the surfactant for the inorganic counter‐ions; for the organic counter‐ions, effects of tighter anionic binding in the micelle also contribute to zein solubilization trends.  相似文献   

12.
The possibility and the prospect of cationic/anionic (“catanionic”) surfactant mixtures based on sulfonate Gemini surfactant (SGS) and bisquaternary ammonium salt (BQAS) in the field of enhanced oil recovery was investigated. The critical micelle concentration (CMC) of SGS/BQAS surfactant mixtures was 5.0 × 10−6 mol/L, 1–2 orders of magnitude lower than neat BQAS or SGS. A solution of either neat SGS or BQAS, could not reach an ultra-low interfacial tension (IFT); but 1:1 mol/mol mixtures of SGS/BQAS reduced the IFT to 1.0 × 10−3 mN/m at 100 mg/L. For the studied surfactant concentrations, all mixtures exhibited the lowest IFT when the molar fraction of SGS among the surfactant equaled 0.5, indicating optimal conditions for interfacial activity. The IFT between the 1:1 mol/mol SGS/BQAS mixtures and crude oil decreased and then increased with the NaCl and CaCl2 concentrations. When the total surfactant concentration was above 50 mg/L, the IFT of SGS/BQAS mixtures was below 0.01 mN/m at the studied NaCl concentrations. Adding inorganic salt reduced the charges of hydrophilic head groups, thereby making the interfacial arrangement more compact. At the NaCl concentration was above 40,000 mg/L, surfactant molecules moved from the liquid–liquid interface to the oil phase, thus resulting in low interfacial activity. In addition, inorganic salts decreased the attractive interactions of the SGS/BQAS micelles that form in water, decreasing the apparent hydrodynamic radius (DH, app) of surfactant aggregates. When the total concentration of surfactants was above 50 mg/L, the IFT between the SGS/BQAS mixtures and crude oil decreased first and then increased with time. At different surfactant concentrations, the IFT of the SGS/BQAS mixtures attained the lowest values at different times. A high surfactant concentration helped surfactant molecules diffuse from the water phase to the interfacial layer, rapidly reducing the IFT. In conclusion, the cationic-anionic Gemini surfactant mixtures exhibit superior interfacial activity, which may promote the application of Gemini surfactant.  相似文献   

13.
A series of cetyl alcohol based anionic bis‐sulfosuccinate gemini surfactants (BSGSCA1,4; BSGSCA1,6 and BSGSCA1,8) with different spacer lengths was prepared using dibromoalkanes. The surfactant structure was elucidated using elemental analysis, Fourier transform infrared spectroscopy (FT‐IR) and nuclear magnetic resonance spectroscopy (NMR). Surface tension measurements were used to determine the critical micelle concentration (CMC), the surface tension at the CMC (γCMC), surface pressure at the CMC (πCMC) and efficiency of adsorption (pC20). On the basis of surface studies, the CMC and γCMC decreases with increasing length of the spacer group. The micelle aggregation number, determined by fluorescence quenching studies, increases with increasing surfactant concentration above the CMC. The micropolarity in the micelle increases with increasing length of the spacer and decreases with increasing surfactant concentration.  相似文献   

14.
A series of alkyl sulphobetaine Gemini surfactants Cn‐GSBS (n = 8, 10, 12, 14, 16) was synthesized, using aliphatic amine, cyanuric chloride, ethylenediamine, N,N′‐dimethyl‐1,3‐propyldiamine and sodium 2‐chloroethane sulfonate as main raw materials. The chemical structures were confirmed by FT‐IR, 1H NMR and elemental analysis. The Krafft points differ markedly with different carbon chain length, for C8‐GSBS, C10‐GSBS and C12‐GSBS are considered to be below 0 °C and C14‐GSBS, C16‐GSBS are higher than 0 °C but lower than room temperature. Surface‐active properties were studied by surface tension and electrical conductivity. Critical micelle concentrations were much lower than dodecyl sulphobetaine (BS‐12) and decreased with increasing length of the carbon chain from 8 to 16, and can reach a minimum as low as 5 × 10?5 mol L?1 for C16‐GSBS. Effects of carbon chain length and concentration of Cn‐GSBS on crude oil emulsion stability were also investigated and discussed.  相似文献   

15.
A type of switchable tertiary amine Gemini surfactant, N,N′‐di(N,N‐dimethyl propylamine)‐N,N′‐didodecyl ethylenediamine, was synthesized by two substitution reactions with 3‐chloro‐1‐(N,N‐dimethyl) propylamine, bromododecane and ethylene diamine as main raw materials. The structure of the product was characterized by FTIR and 1H‐NMR. We also investigated the surface tension when CO2 was bubbled in different concentrations of surfactant solution and the influence of different CO2 volumes on surface tension under a constant surfactant concentration. Finally the surface tension curve and the related parameters were acquired by surface tension measurements. The experimental results showed that the structure of the synthesized compounds were in conformity with the expected structure of the surfactant, and displayed a better surface activity after bubbling CO2. The critical micelle concentration (CMC) surface tension at CMC (γcmc) pC20 (negative logarithm of the surfactant's molar concentration C20, required to reduce the surface tension by 20 mN/m) surface excess (Γmax) at air/solution interface and the minimum area per surfactant molecule at the air/solution interface (Amin) were determined. Results indicate that the target product had good surface activity after bubbling CO2.  相似文献   

16.
Surfactant‐enhanced remediation (SER) is one of the most effective remediation methods for polycyclic aromatic hydrocarbons (PAH) contaminated soils. However, mass deployment of SER has been restricted due to the shortage of the separation, recycle technology of the surfactant and its operation costs. This research mainly studied the reversibility of 2‐n‐lauryl‐1,1,3,3‐tetramethyl guanidine (DTMG) surfactant and its influence on reversible solubilization of typical PAH. Experimental results showed that the reversibility of the DTMG surfactant is excellent. The critical micellar concentration (CMC), surface tension and pH of DTMG in CO2/N2 conditions undergo reversible changes promptly. DTMG·CO2 shows a strong solubilization capacity for PAH; the apparent solubilities of the selected PAH pyrene, phenanthrene and anthracene in 4 mmol/L of DTMG·CO2 solution were about 32.4, 17.1 and 14.6 times higher than in water, respectively. The corresponding molar solubilization ratios were 5.4 × 10?3, 2.80 × 10?2 and 1.1 × 10?3, much higher than those with DTMG. More than 50 % of the PAH in surfactant solutions could be released through gas control at each surfactant concentration, and improved release efficiency was achieved at low surfactant concentrations. In brief, such results in this work introduce a facile method to meliorate the SER technology.  相似文献   

17.
To prepare high‐performance clean fracturing fluids, cationic surfactants with a Gemini structure were synthesized as thickening agents. Distinct elastic characteristics at a sweep frequency of 0.1–10 Hz and shear resistance at high temperature were shown. Viscosity remained at about 150 mPa s after shearing for 60 min at 140 °C and 170 s?1. Stability investigation on cationic Gemini surfactant solution revealed that both viscosity and viscoelasticity were greatly affected by the surfactant concentration, temperature, and the amount of inorganic salt (potassium chloride). Complete formulation of a surfactant micelle structure in an aqueous solution requires a certain amount of time.  相似文献   

18.
Three series of nonionic surfactants derived from polytriethanolamine containing 8, 10, and 12 units of triethanolamine were synthesized. Structural assignment of the different compounds was made on the basis of FTIR and 1H‐NMR spectroscopic data. The surface parameters of these surfactants included critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN m?1 (pC20), maximum surface excess (Γmax), and the interfacial area occupied by the surfactant molecules (Amin) using surface tension measurements. The micellization and adsorption free energies were calculated at 25 °C.  相似文献   

19.
Gemini salts of linear alkylbenzene sulfonate (LABS) were prepared by neutralization of sulfonic acid with a series of low-molecular-weight diamines in aqueous solution. The equilibrium surface activity of Gemini salts of LABS was determined by measuring the surface tension as a function of surfactant concentration to determine the critical micelle concentration (CMC), surface tension at the CMC (γCMC), and the area per molecule at the air-water interface (Å2). Electrical conductivity was measured as a function of surfactant concentration to determine the CMC and counterion binding. Dynamic surface tension was measured using a bubble pressure tensiometer to infer the rate at which the surfactant migrates to the air-water interface. Equilibrium interfacial tension against mineral oil was measured using a spinning drop tensiometer. Dynamic interfacial tension was measured using a drop volume tensiometer. The surface tension, CMC, and interfacial tension of Gemini salts of LABS decreased compared to monovalent organic and inorganic salts. The CMC decreases with increasing molecular weight of the diamine spacer group. Dynamic surface and interfacial tension of Gemini salts of LABS are lower than monovalent salts. The foam volume of Gemini salts of LABS was determined using a high shear blender test. The foam volume of Gemini salts of LABS is lower than monovalent salts and depends on the size of the spacer group. Hard-surface cleaning was measured using artificial soil applied to white Formica tiles. Soil removal was determined by optical reflectance as a function of abrasion cycles. Gemini salts of LABS show reduced hard-surface cleaning performance compared to monovalent salts. Detergency of different types of soils on cotton and polyester/cotton fabric was determined by optical reflectance measurements. Gemini salts of LABS show improved cleaning performance compared to monovalent salts. Cleaning performance increases with increasing molecular weight of the diamine spacer group. In situ neutralization of LABS with organic diamines is a simple and efficient way to prepare anionic Gemini surfactants for industrial scale applications.  相似文献   

20.
Surface tension, fluorescence, and dynamic light scattering were used to investigate the properties of a binary surfactant system comprising an anionic gemini surfactant (DLMC) and cationic gemini surfactant (II‐12‐EO2). Surface tension measurements afforded the critical micelle concentration (cmc) of the mixture and the values are all lower than those of pure constituent surfactants. For the mixtures of II‐12‐EO2/DLMC, the micelle aggregation number decreases with the increase of II‐12‐EO2, and the micropolarity of the micelle is lowest when the molar fraction of II‐12‐EO2 is 0.5; the hydrodynamic radius (Rh) of the mixed micelle first increases and then decreases with the addition of II‐12‐EO2, and larger micelles are obtained when the molar fraction of II‐12‐EO2 is 0.5 or 0.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号