共查询到20条相似文献,搜索用时 0 毫秒
2.
This paper addresses automatic image annotation problem and its application to multi-modal image retrieval. The contribution of our work is three-fold. (1) We propose a probabilistic semantic model in which the visual features and the textual words are connected via a hidden layer which constitutes the semantic concepts to be discovered to explicitly exploit the synergy among the modalities. (2) The association of visual features and textual words is determined in a Bayesian framework such that the confidence of the association can be provided. (3) Extensive evaluation on a large-scale, visually and semantically diverse image collection crawled from Web is reported to evaluate the prototype system based on the model. In the proposed probabilistic model, a hidden concept layer which connects the visual feature and the word layer is discovered by fitting a generative model to the training image and annotation words through an Expectation-Maximization (EM) based iterative learning procedure. The evaluation of the prototype system on 17,000 images and 7736 automatically extracted annotation words from crawled Web pages for multi-modal image retrieval has indicated that the proposed semantic model and the developed Bayesian framework are superior to a state-of-the-art peer system in the literature. 相似文献
4.
The problem of sharp boundary widely exists in image classification algorithms that use traditional association rules. This problem makes classification more difficult and inaccurate. On the other hand, massive image data will produce a lot of redundant association rules, which greatly decrease the accuracy and efficiency of image classification. To relieve the influence of these two problems, this paper proposes a novel approach integrating fuzzy association rules and decision tree to accomplish the task of automatic image annotation. According to the original features with membership functions, the approach first obtains fuzzy feature vectors, which can describe the ambiguity and vagueness of images. Then fuzzy association rules are generated from fuzzy feature vectors with fuzzy support and fuzzy confidence. Fuzzy association rules can capture correlations between low-level visual features and high-level semantic concepts of images. Finally, to tackle the large size of fuzzy association rules base, we adopt decision tree to reduce the unnecessary rules. As a result, the algorithm complexity is decreased to a large extent. We conduct the experiments on two baseline datasets, i.e. Corel5k and IAPR-TC12. The evaluation measures include precision, recall, F-measure and rule number. The experimental results show that our approach performs better than many state-of-the-art automatic image annotation approaches. 相似文献
5.
A probabilistic formulation for semantic image annotation and retrieval is proposed. Annotation and retrieval are posed as classification problems where each class is defined as the group of database images labeled with a common semantic label. It is shown that, by establishing this one-to-one correspondence between semantic labels and semantic classes, a minimum probability of error annotation and retrieval are feasible with algorithms that are 1) conceptually simple, 2) computationally efficient, and 3) do not require prior semantic segmentation of training images. In particular, images are represented as bags of localized feature vectors, a mixture density estimated for each image, and the mixtures associated with all images annotated with a common semantic label pooled into a density estimate for the corresponding semantic class. This pooling is justified by a multiple instance learning argument and performed efficiently with a hierarchical extension of expectation-maximization. The benefits of the supervised formulation over the more complex, and currently popular, joint modeling of semantic label and visual feature distributions are illustrated through theoretical arguments and extensive experiments. The supervised formulation is shown to achieve higher accuracy than various previously published methods at a fraction of their computational cost. Finally, the proposed method is shown to be fairly robust to parameter tuning 相似文献
6.
Automatic image annotation has become an important and challenging problem due to the existence of semantic gap. In this paper, we firstly extend probabilistic latent semantic analysis (PLSA) to model continuous quantity. In addition, corresponding Expectation-Maximization (EM) algorithm is derived to determine the model parameters. Furthermore, in order to deal with the data of different modalities in terms of their characteristics, we present a semantic annotation model which employs continuous PLSA and standard PLSA to model visual features and textual words respectively. The model learns the correlation between these two modalities by an asymmetric learning approach and then it can predict semantic annotation precisely for unseen images. Finally, we compare our approach with several state-of-the-art approaches on the Corel5k and Corel30k datasets. The experiment results show that our approach performs more effectively and accurately. 相似文献
7.
Image semantic annotation can be viewed as a multi-class classification problem, which maps image features to semantic class
labels, through the procedures of image modeling and image semantic mapping. Bayesian classifier is usually adopted for image
semantic annotation which classifies image features into class labels. In order to improve the accuracy and efficiency of
classifier in image annotation, we propose a combined optimization method which incorporates affinity propagation algorithm,
optimizing training data algorithm, and modeling prior distribution with Gaussian mixture model to build Bayesian classifier.
The experiment results illustrate that the classifier performance is improved for image semantic annotation with proposed
method. 相似文献
8.
Multimedia Tools and Applications - Images are complex multimedia data that contain rich semantic information. Currently, most of image annotation algorithms are only annotating the object... 相似文献
9.
The impetus behind Semantic Web research remains the vision of supplementing availability with utility; that is, the World Wide Web provides availability of digital media, but the Semantic Web will allow presently available digital media to be used in unseen ways. An example of such an application is multimedia retrieval. At present, there are vast amounts of digital media available on the web. Once this media gets associated with machine-understandable metadata, the web can serve as a potentially unlimited supplier for multimedia web services, which could populate themselves by searching for keywords and subsequently retrieving images or articles, which is precisely the type of system that is proposed in this paper. Such a system requires solid interoperability, a central ontology, semantic agent search capabilities, and standards. Specifically, this paper explores this cross-section of image annotation and Semantic Web services, models the web service components that constitute such a system, discusses the sequential, cooperative execution of these Semantic Web services, and introduces intelligent storage of image semantics as part of a semantic link space. 相似文献
11.
Automatic Image Annotation (AIA) is the task of assigning keywords to images, with the aim to describe their visual content. Recently, an unsupervised approach has been used to tackle this task. Unsupervised AIA (UAIA) methods use reference collections that consist of the textual documents containing images. The aim of the UAIA methods is to extract words from the reference collection to be assigned to images. In this regard, by using an unsupervised approach it is possible to include large vocabularies because any word could be extracted from the reference collection. However, having a greater diversity of words for labeling entails to deal with a larger number of wrong annotations, due to the increasing difficulty for assigning a correct relevance to the labels. With this problem in mind, this paper presents a general strategy for UAIA methods that reranks assigned labels. The proposed method exploits the semantic-relatedness information among labels in order to assign them an appropriate relevance for describing images. Experimental results in different benchmark datasets show the flexibility of our method to deal with assignments from free-vocabularies, and its effectiveness to improve the initial annotation performance for different UAIA methods. Moreover, we found that (1) when considering the semantic-relatedness information among the assigned labels, the initial ranking provided by a UAIA method is improved in most of the cases; and (2) the robustness of the proposed method to be applied on different UAIA methods, will allow extending capabilities of state-of-the-art UAIA methods. 相似文献
12.
There is an increasing need for automatic image annotation tools to enable effective image searching in digital libraries. In this paper, we present a novel probabilistic model for image annotation based on content-based image retrieval techniques and statistical analysis. One key difficulty in applying statistical methods to the annotation of images is that the number of manually labeled images used to train the methods is normally insufficient. Numerous keywords cannot be correctly assigned to appropriate images due to lacking or missing information in the labeled image databases. To deal with this challenging problem, we also propose an enhanced model in which the annotated keywords of a new image are defined in terms of their similarity at different semantic levels, including the image level, keyword level, and concept level. To avoid missing some relevant keywords, the model labels the keywords with the same concepts as the new image. Our experimental results show that the proposed models are effective for annotating images that have different qualities of training data. 相似文献
13.
In recent years, the rapid growth of multimedia content makes content-based image retrieval (CBIR) a challenging research problem. The content-based attributes of the image are associated with the position of objects and regions within the image. The addition of image content-based attributes to image retrieval enhances its performance. In the last few years, the bag-of-visual-words (BoVW) based image representation model gained attention and significantly improved the efficiency and effectiveness of CBIR. In BoVW-based image representation model, an image is represented as an order-less histogram of visual words by ignoring the spatial attributes. In this paper, we present a novel image representation based on the weighted average of triangular histograms (WATH) of visual words. The proposed approach adds the image spatial contents to the inverted index of the BoVW model, reduces overfitting problem on larger sizes of the dictionary and semantic gap issues between high-level image semantic and low-level image features. The qualitative and quantitative analysis conducted on three image benchmarks demonstrates the effectiveness of the proposed approach based on WATH. 相似文献
14.
Recent advances in semantic image analysis have brought forth generic methodologies to support concept learning at large scale. The attained performance however is highly variable, reflecting effects related to similarities and variations in the visual manifestations of semantically distinct concepts, much as to the limitations issuing from considering semantics solely in the form of perceptual representations. Aiming to enhance performance and improve robustness, we investigate a fuzzy DLs-based reasoning framework, which enables the integration of scene and object classifications into a semantically consistent interpretation by capturing and utilising the underlying semantic associations. Evaluation with two sets of input classifiers, configured so as to vary with respect to the wealth of concepts’ interrelations, outlines the potential of the proposed approach in the presence of semantically rich associations, while delineating the issues and challenges involved. 相似文献
15.
Ontologies, which are formal representations of knowledge within a domain, can be used for designing and sharing conceptual models of enterprises information for the purpose of enhancing understanding, communication and interoperability. For representing a body of knowledge, different ontologies may be designed. Recently, designing ontologies in a modular manner has emerged for achieving better reasoning performance, more efficient ontology management and change handling. One of the important challenges in the employment of ontologies and modular ontologies in modeling information within enterprises is the evaluation of the suitability of an ontology for a domain and the performance of inference operations over it. In this paper, we present a set of semantic metrics for evaluating ontologies and modular ontologies. These metrics measure cohesion and coupling of ontologies, which are two important notions in the process of assessing ontologies for enterprise modeling. The proposed metrics are based on semantic-based definitions of relativeness, and dependencies between local symbols, and also between local and external symbols of ontologies. Based on these semantic definitions, not only the explicitly asserted knowledge in ontologies but also the implied knowledge, which is derived through inference, is considered for the sake of ontology assessment. We present several empirical case studies for investigating the correlation between the proposed metrics and reasoning performance, which is an important issue in applicability of employing ontologies in real-world information systems. 相似文献
16.
High quality domain ontologies are essential for successful employment of semantic Web services. However, their acquisition is difficult and costly, thus hampering the development of this field. In this paper we report on the first stage of research that aims to develop (semi-)automatic ontology learning tools in the context of Web services that can support domain experts in the ontology building task. The goal of this first stage was to get a better understanding of the problem at hand and to determine which techniques might be feasible to use. To this end, we developed a framework for (semi-)automatic ontology learning from textual sources attached to Web services. The framework exploits the fact that these sources are expressed in a specific sublanguage, making them amenable to automatic analysis. We implement two methods in this framework, which differ in the complexity of the employed linguistic analysis. We evaluate the methods in two different domains, verifying the quality of the extracted ontologies against high quality hand-built ontologies of these domains. Our evaluation lead to a set of valuable conclusions on which further work can be based. First, it appears that our method, while tailored for the Web services context, might be applicable across different domains. Second, we concluded that deeper linguistic analysis is likely to lead to better results. Finally, the evaluation metrics indicate that good results can be achieved using only relatively simple, off the shelf techniques. Indeed, the novelty of our work is not in the used natural language processing methods but rather in the way they are put together in a generic framework specialized for the context of Web services. 相似文献
17.
Automatically assigning relevant text keywords to images is an important problem. Many algorithms have been proposed in the past decade and achieved good performance. Efforts have focused upon model representations of keywords, whereas properties of features have not been well investigated. In most cases, a group of features is preselected, yet important feature properties are not well used to select features. In this paper, we introduce a regularization-based feature selection algorithm to leverage both the sparsity and clustering properties of features, and incorporate it into the image annotation task. Using this group-sparsity-based method, the whole group of features [e.g., red green blue (RGB) or hue, saturation, and value (HSV)] is either selected or removed. Thus, we do not need to extract this group of features when new data comes. A novel approach is also proposed to iteratively obtain similar and dissimilar pairs from both the keyword similarity and the relevance feedback. Thus, keyword similarity is modeled in the annotation framework. We also show that our framework can be employed in image retrieval tasks by selecting different image pairs. Extensive experiments are designed to compare the performance between features, feature combinations, and regularization-based feature selection methods applied on the image annotation task, which gives insight into the properties of features in the image annotation task. The experimental results demonstrate that the group-sparsity-based method is more accurate and stable than others. 相似文献
18.
Hypermedia composite templates define generic structures of nodes and links to be added to a document composition, providing spatio-temporal synchronization semantics. This paper presents EDITEC, a graphical editor for hypermedia composite templates. EDITEC templates are based on the XTemplate 3.0 language. The editor was designed for offering a user-friendly visual approach. It presents a new method that provides several options for representing iteration structures graphically, in order to specify a certain behavior to be applied to a set of generic document components. The editor provides a multi-view environment, giving the user a complete control of the composite template during the authoring process. Composite templates can be used in NCL documents for embedding spatio-temporal semantics into NCL contexts. NCL is the standard declarative language used for the production of interactive applications in the Brazilian digital TV system and ITU H.761 IPTV services. Hypermedia composite templates could also be used in other hypermedia authoring languages offering new types of compositions with predefined semantics. 相似文献
19.
With the development of the Semantic Web technology, the use of ontologies to store and retrieve information covering several domains has increased. However, very few ontologies are able to cope with the ever-growing need of frequently updated semantic information or specific user requirements in specialized domains. As a result, a critical issue is related to the unavailability of relational information between concepts, also coined missing background knowledge. One solution to address this issue relies on the manual enrichment of ontologies by domain experts which is however a time consuming and costly process, hence the need for dynamic ontology enrichment. In this paper we present an automatic coupled statistical/semantic framework for dynamically enriching large-scale generic ontologies from the World Wide Web. Using the massive amount of information encoded in texts on the Web as a corpus, missing background knowledge can therefore be discovered through a combination of semantic relatedness measures and pattern acquisition techniques and subsequently exploited. The benefits of our approach are: ( i) proposing the dynamic enrichment of large-scale generic ontologies with missing background knowledge, and thus, enabling the reuse of such knowledge, ( ii) dealing with the issue of costly ontological manual enrichment by domain experts. Experimental results in a precision-based evaluation setting demonstrate the effectiveness of the proposed techniques. 相似文献
|