共查询到19条相似文献,搜索用时 63 毫秒
1.
基于HMM的单样本可变光照、姿态人脸识别 总被引:3,自引:1,他引:2
提出了一种基于HMM的单样本可变光照、姿态人脸识别算法.该算法首先利用人工配准的训练集对单张正面人脸输入图像与Candide3模型进行自动配准,在配准的基础上重建特定人脸三维模型.对重建模型进行各种角度的旋转可得到姿态不同的数字人脸,然后利用球面谐波基图像调整数字人脸的光照系数可产生光照不同的数字人脸.将产生的光照、姿态不同的数字人脸同原始样本图像一起作为训练数据,为每个用户建立其独立的人脸隐马尔可夫模型.将所提算法对现有人脸库进行识别,并与基于光照补偿和姿态校正的识别方法进行比较.结果显示,该算法能有效避免光照补偿、姿态校正方法因对某些光照、姿态校正不理想而造成的识别率低的情况,能更好地适应光照、姿态不同条件下的人脸识别. 相似文献
2.
肖云 《数字社区&智能家居》2011,(9)
2D人脸识别技术目前已经成熟,但由于单一的2D图像不能提供识别所需要的完整信息,所以识别精度难以提高。在人脸识别过程中,特征提取是影响识别效果的一个重要环节,该文在传统的主成分分析法和由此改进的2DPCA方法的基础上提出了3D人脸识别方法,该方法将人脸图象分为几个部分分别进行特征提取,充分考虑每个部分所包含的特征信息量的多少,在分类时赋予它们不同的权值。因此将人脸用立体图像来表示进行识别,以提高其精度是目前极富挑战性的前沿课题。 相似文献
3.
4.
现有人脸纹理重建方法对于人脸的皱纹、胡须、瞳孔颜色等重建效果往往不够细致.为了解决此问题,文中提出基于人脸标准化的纹理和光照保持3D人脸重构.首先对2D人脸图像标准化,使用光照信息和对称纹理重构人脸自遮挡区域的纹理.然后依据2D-3D点对应关系从标准化的2D人脸图像获取相应的3D人脸纹理,结合人脸形状重构和纹理信息,得到最终的3D人脸重构结果.实验表明文中方法有效保留原始2D图像的纹理和光照信息,重构的人脸更自然,具有更丰富的人脸细节. 相似文献
5.
针对3DMM参数拟合方法生成的纹理过于粗糙、结果不够逼真的问题,提出一种基于深度学习的单幅图像逼真3D人脸重建方法.首先构建RP-Net回归网络和包含5万幅人脸图像的数据集,从输入图像中学习参数,并拟合人脸模型生成3D人脸几何;然后通过构造多层次的损失函数进行弱监督学习,包括低水平的像素损失、地标损失和高水平的身份损失;最后通过纹理映射的方式生成逼真的人脸纹理.在2个通用人脸数据集和1个人工生成的人脸数据集上与最近的3D人脸重建方法进行对比实验,并对影响重建的光照、表情和转向等因素进行实验,根据SSIM和PSNR对3D重建结果进行量化分析.实验结果表明,所提方法面向单幅图像可以生成准确的3D人脸形状和逼真的人脸纹理;与最近的3D人脸重建方法相比,该方法的训练时间和迭代次数分别降低了6%和13%,SSIM值增加0.005~0.010,PSNR值平均提高0.03~0.08 dB. 相似文献
6.
方程 《电脑编程技巧与维护》2015,(6):82-83,85
科学技术的飞速发展,很多高新技术都在各行各业得到了广泛应用,也在各个领域内掀起了一股科技改革浪潮,3D人脸识别技术就是其中的典型代表,3D人脸识别技术的应用领域已经越来越广泛.主要介绍了几种主流的3D人脸识别技术,包括基于三维数据的3D人脸识别技术和基于二维图形的3D识别技术. 相似文献
7.
提出了一种基于L1总变分模型的对数商图像光照不变人脸识别算法。用L1总变分模型作为低通滤波算子对图像平滑滤波,得到图像光照分量的估计,然后在对数域中定义原图像与其光照分量的商为光照归一化图像,并用该图像作为光照不变量进行人脸识别。基于L1总变分模型的平滑滤波具有较好的边缘保持作用,能有效地消除光晕现象,并且参数设置简单。在YaleB和CMU PIE 人脸图像库上的试验结果表明,该算法能有效地提高人脸识别系统在不同光照条件下的识别率。 相似文献
8.
基于三维人脸建模的多姿态人脸识别 总被引:1,自引:1,他引:0
待匹配人脸图像与原始图像存在姿态和光照的差异,是自动人脸识别的两个主要瓶颈问题.给出了采用三维人脸模型来解决人脸姿态的变化对人脸识别的影响问题.通过正侧面图像,利用B样条曲线与径向基函数相结合的方法进行三维人脸重建,生成三维人脸模型库.分别计算待匹配人脸图像的3个自由度,快速估计出人脸的姿态;结合待匹配人脸图像的姿态参数及三维人脸模型库,获得与待匹配图像相同姿态的三维人脸模型库中的二维人脸图像.最后完成了相同人脸姿态的二维人脸识别.实验结果证明,该方法无需复杂的设备、简单易行、识别时间短,是一种非常实用的解决人脸姿态问题的识别方法. 相似文献
9.
待匹配的人脸图像与数据库中的原型图像之间的光照差异是自动人脸识别的主要瓶颈问题之一。提出了一种基于样例学习方式的3D人脸形状重建方法,既可以生成任意光照条件下的数据库中人脸图像,也可以对待识别图像进行重新光照,合成无阴影的图像。该方法在建立人脸数据库时利用光度立体技术分离人脸图像的纹理和形状信息,并用多面体模型在最小二乘意义下恢复其3D信息并更新法向量场以克服阴影误差,从而可以利用计算机图形学的方法合成任意光照条件下和小角度姿态改变时的人脸图像;在识别时采用数据库中3D数据的线性组合形式对输入图像建模,以估计其3D信息,从而可以重新照明。在YaleB人脸数据库上的实验表明,在建立3D人脸数据库后,该方法可以快速恢复输入单幅图像中人脸的3D信息,并生成任意光照条件的该人脸图像。 相似文献
10.
无约束场景下,低质量的人脸图像不仅浪费计算资源而且降低系统识别率.针对此问题,提出一种基于人脸识别的人脸质量评估方法对人脸图像进行预评估.以人脸识别系统特征提取网络为基础网络在COX数据集上进行微调,并使用微调后网络对COX数据集进行质量分数标定.最后,结合基础网络及质量预测网络并以相应损失函数在标定数据上进行回归学习以获取质量评估模型.实验结果表明,该方法能够有效区分不同质量的人脸图像并提升人脸识别系统性能. 相似文献
11.
12.
Mun Wai LeeAuthor VitaeSurendra RanganathAuthor Vitae 《Pattern recognition》2003,36(8):1835-1846
The paper proposes a novel, pose-invariant face recognition system based on a deformable, generic 3D face model, that is a composite of: (1) an edge model, (2) a color region model and (3) a wireframe model for jointly describing the shape and important features of the face. The first two submodels are used for image analysis and the third mainly for face synthesis. In order to match the model to face images in arbitrary poses, the 3D model can be projected onto different 2D viewplanes based on rotation, translation and scale parameters, thereby generating multiple face-image templates (in different sizes and orientations). Face shape variations among people are taken into account by the deformation parameters of the model. Given an unknown face, its pose is estimated by model matching and the system synthesizes face images of known subjects in the same pose. The face is then classified as the subject whose synthesized image is most similar. The synthesized images are generated using a 3D face representation scheme which encodes the 3D shape and texture characteristics of the faces. This face representation is automatically derived from training face images of the subject. Experimental results show that the method is capable of determining pose and recognizing faces accurately over a wide range of poses and with naturally varying lighting conditions. Recognition rates of 92.3% have been achieved by the method with 10 training face images per person. 相似文献
13.
针对人脸识别算法准确率受面部姿态、遮挡、图像分辨率等因素影响的问题,提出一种超分辨率摆正的方法,作用于低质量无约束输入图像上,生成高清晰度标准正面视图。主要通过估计输入图像与3D模型间的投影矩阵,产生标准正面视图,通过人脸对称性的特点,补全由于姿态、遮挡等原因所产生的面部缺失像素。在摆正过程中,为了提高图像分辨率以及避免面部像素信息丢失,引入一个16层的深度递归卷积神经网络进行超分辨率重构;并提出两个扩展:递归监督和跳跃链接,来降低网络训练难度以及缩小模型体量。在经过处理的LFW数据集上实验表明,该方法对人脸识别和性别检测算法的性能具有显著提升作用。 相似文献
14.
15.
通过综合运用人脸空间的超球流形约束、基于梯度的启发式全局优化、光照的球面谐波描述以及凸包可见点集的直接消隐方法,提出一种三维可形变模型的图像匹配方法.首先通过形状超球流形约束下的全局优化算法求解摄像机参数和形状参数,然后使用以上参数和凸包点集的直接消隐方法确定物像点对应关系,最后根据物像点对应关系由反射率超球流形约束下的全局优化算法求解光照参数和反射率参数.定量的对比实验结果表明,该方法无需借助分区域拟合、人为估计参数值、层次匹配策略或复杂的特征组合,即可由单幅图像恢复三维可形变模型(3DMM)的全部参数. 相似文献
16.
利用双线性分析的三维人脸表情模拟技术 总被引:1,自引:0,他引:1
具有真实感的三维人脸表情合成是计算机应用领域的一个热点问题.提出一种基于双线性分析的三维人脸表情生成方法.在对人脸数据进行分区域统计分析的基础上,建立了表情与身份相独立的双线性统计模型.设计了该模型的肌肉驱动方法,通过肌肉参数来驱动相应表情统计参数变化来生成丰富表情.对于输入的特定二维或三维人脸,利用形变模型(Morphable Model), 可自动实现其模型匹配.实验结果表明,该方法能够模拟各种具有较高真实感的人脸表情. 相似文献
17.
18.
BJUT-3D三维人脸数据库及其处理技术 总被引:5,自引:0,他引:5
BJUT-3D是目前国际上最大的中国人的三维人脸数据库,其中包括经过顸处理的1200名中国人的三维人脸数据,这一数据资源对于三维人脸识别与建模方面的研究有重要意义.首先介绍了BJUT-3D数据库的数据获取条件、数据形式,并针对数据库建立过程中数据预处理技术进行了讨论.最后作为数据库的直接应用,进行了多姿态人脸识别和人脸姿态估计算法的研究.实验结果证实,该算法具有良好的性能. 相似文献