首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
水泥砂浆固化土物理力学特性试验研究   总被引:6,自引:0,他引:6  
为了解水泥砂浆固化土的掺砂量与强度之间的关系,找出具有工程应用前景的配比,在不同掺砂量不同龄期条件下对水泥砂浆固化土进行了无侧限抗压强度试验,研究了水泥砂浆固化土的强度和变形特性,分析了掺砂量和龄期对水泥砂浆固化土的强度和变形特性的影响。研究结果表明:在水泥土中掺入一定量的砂,可有效提高水泥土强度;一定水泥掺入比下,存在一个最佳掺砂量,使水泥砂浆固化土强度(qu)最高,变形系数(E50)最大;水泥砂浆固化土与水泥土的应力应变曲线均有明显的峰值,应力应变关系属加工软化型,其残余强度随着掺砂量的增加而增加;采用水泥砂浆搅拌桩加固软弱地基时,即使采用较高的掺砂量和置换率,加固体本身重量增加有限,下卧层附加应力增加也很小。  相似文献   

2.
介绍了水泥砂浆土的无侧限抗压强度试验的材料,并对具体的试验方案作了阐述,通过抗压强度试验得出,水泥砂浆土强度与掺砂量、龄期、水泥掺入比有关,在水泥土中掺入适量的砂,形成水泥砂浆土,可有效的提高其抗压强度,尤其是后期强度。  相似文献   

3.
罗良华 《江苏建筑》2016,(4):105-108
鉴于无锡新锡澄路工程范围内淤泥质软土,通过试验及数值模拟从强度和变形2个角度对比分析了水泥土搅拌桩和水泥砂土搅拌桩2种方法的特性差异,研究得出:水泥掺量对水泥土的抗压强度有较大影响,且不同水泥掺量的水泥土抗压强度的差异随着养护龄期增加而增大;水泥土的抗压强度随着掺砂量的增加先增大后减小,在掺砂量为10%时,水泥砂土的抗压强度明显大于水泥土的抗压强度;通过FLAC3D软件模拟单桩在荷载下的沉降,得出在较大的荷载下,水泥砂土搅拌桩的沉降量小于水泥搅拌桩。  相似文献   

4.
纤维土作为路用材料的试验研究   总被引:3,自引:1,他引:2  
为了了解纤维土的路用特性,采用室内试验分析了影响纤维土黏聚力的主要因素,研究了素土、石灰土和水泥土掺加纤维后所表现出来的基本力学性能.结果表明:纤维掺量对纤维土黏聚力影响显著;在素土、石灰土和水泥土中掺加纤维均能明显提高土体的黏聚力,但内摩擦角变化不大;素土的初始弹性模量随纤维掺量的增大而增大,而石灰土和水泥土的初始弹性模量随纤维掺量的增大而减小;素土和石灰土掺加纤维后可应用在需要提高抗变形能力的实际工程中,水泥土掺加纤维后可应用在需要提高强度的实际工程中.  相似文献   

5.
通过橡胶水泥土桩复合地基室内载荷试验,研究了橡胶水泥土桩复合地基的承载特性及橡胶粉掺量的影响。对于橡胶水泥土单桩复合地基,桩土荷载随上部荷载变化存在再分配过程。桩土应力比在加载过程中非定值,曲线呈上单凸峰变化。褥垫层厚度对橡胶水泥土单桩复合地基的桩土应力比同样有调节作用。随着橡胶粉掺量的增加,复合地基的比例界限值增加;桩身的应变增大并沿随桩身高度呈显著线性变化;桩土应力比值减小。研究表明,合理调整桩身橡胶粉掺量可以优化桩土应力比,改善复合地基承载性能。  相似文献   

6.
通过在劲性水泥土组合模型桩的外芯水泥土中掺入适量的砂,形成劲性水泥砂浆土组合模型桩,实施静载试验得出,当最佳掺砂量为10%时,组合模型桩的极限承载力将明显提高。在水泥土(a_s=0%)里掺入一定砂量后,当水泥砂浆土抗压强度大于水泥土抗压强度时,混凝土芯桩周边水泥砂浆土将产生近似竖向、环向裂缝,并从混凝土芯桩底到混凝土芯桩顶2/3L区域范围缩小到1/2L区域范围内,且有沿着桩身向下移动的趋势,为工程应用提供参考依据。  相似文献   

7.
庄心善  寇强 《工业建筑》2022,(5):169-173+218
运用GDS真/动三轴仪和PQ001型低磁场核磁共振分析仪探究纳米SiO2改良水泥土的动力特性及其内部孔隙变化。动力特性试验结果表明:水泥土的动应力-动应变曲线随纳米SiO2掺量增加先上移后下降,动变形模量-动应变曲线、同级荷载滞回曲线圈面积、阻尼比-动应变曲线随着纳米SiO2掺量增加先下降后上移,在纳米SiO2掺量为2.5%时,水泥土抵抗动荷载能力最强;孔结构分析得出纳米SiO2改良水泥土的内部孔隙结构得到改善,强度提高。推荐纳米SiO2最优掺量为2.5%。  相似文献   

8.
宋树祥  郑超  杨昆  冯德銮 《工业建筑》2023,(12):190-197
为探索砂粒对水泥固化华南滨海软土强度和干湿循环特性的影响规律,制备了一系列不同掺砂量和掺砂粒径的水泥固化华南滨海软土试样,分别进行无侧限抗压强度试验和海水及淡水条件下的干湿循环试验,同时对加载完毕的试样进行扫描电镜(SEM)测试和X射线衍射(XRD)试验。试验结果表明:掺砂水泥土试样的第7,14,28天无侧限抗压强度随掺砂量的提高而增大,其第28天强度随掺砂粒径的减小而增大;掺砂水泥土试样经历两轮干湿循环后的强度损失率最大达61%,干湿循环导致的强度劣化特性随砂粒径的减小和掺砂量的增大而得到更好的改善,并且,掺砂水泥土试样在淡水条件下的抗干湿循环能力明显优于海水条件。SEM和XRD的测试结果表明:掺砂水泥固化华南滨海软土的作用主要表现在:1)模量替换作用(高模量的砂粒替换小模量的软土);2)砂粒-水泥土界面胶结作用;3)裂纹扩展阻隔作用。  相似文献   

9.
水泥砂浆的配合比是影响灌注式复合路面材料成败的主要因素之一。通过探讨砂胶比以及粉煤灰掺量2种因素对水泥砂浆灌浆料的影响机理,确定最优砂胶比和最佳粉煤灰掺量。水泥砂浆的流动度、干缩率和强度3种指标分别影响了水泥砂浆的灌注性以及成型后复合路面材料的干缩性能和抗变形能力,因此根据上述3种性能指标分析试验,最终得到一种既满足室内试验要求又满足工程应用的粉煤灰灌注水泥砂浆配合比。粉煤灰型水泥砂浆最佳配比:水胶比为0.5,砂胶比为0.3,粉煤灰掺量为12%。  相似文献   

10.
为了减小水泥灰土稳定砂基层材料收缩变形量,增强其抗裂能力,对水泥灰土稳定砂材料的配比进行了研究,掺加了适量固化剂.通过对比研究掺加固化剂水泥土稳定砂和普通水泥灰土稳定砂各龄期的无侧限抗压强度、劈裂强度、抗压回弹模量和干缩系数等路用性能指标,认为固化剂能够显著改善水泥灰土稳定砂材料的路用性能.最后,通过电镜扫描和能谱分析方法,对其微观结构和粘结方式进行研究,进一步验证了掺加固化剂的水泥土稳定砂基层路用性能的优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号