首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
基于非饱和制样法(US法)和饱和试样气体扩散制样(SD法)2种制样方法,利用三轴剪切试验研究不同水合物赋存模式对含CO2水合物土力学特性的影响规律。试验结果证实水合物的赋存模式及其含量对含水合物土的力学特性存在重要影响,微观机制分析表明:US法制得试样属于胶结赋存模式,该模式表现出典型的胶结土的结构特性,而 SD 法制得试样根据水合物含量不同,属于填充模式、接触模式和透镜体模式,显示出明显的颗粒摩擦材料的力学特性,但由于水合物的破碎损伤效应也会导致应变软化现象。最后,利用有效水合物饱和度的概念,提出能考虑2种水合物形成模式下抗剪强度预测的经验公式。  相似文献   

2.
含水合物沉积物强度特性的三轴试验研究   总被引:2,自引:0,他引:2  
针对含水合物沉积物基础力学试验数据相对缺乏的现状,分别采用通气法和预冻结法制备了含甲烷水合物和含四氢呋喃(THF)水合物的砂性沉积物试样,并通过低温高压三轴试验系统研究了含水合物沉积物的强度特性及其影响因素,重点分析了试样强度在不同水合物饱和度情况下的发展规律,并证实了试验反压的重要影响。结果表明:试样黏聚强度随水合物饱和度增加呈指数型增长。当水合物饱和度不高时(<50%),试样内摩擦角变化不大;当饱和度较高时(>80%),由于土颗粒咬合作用不能充分发挥,试样内摩擦角降低。另外,反压有助于提高水合物强度,从而提高含水合物沉积物的强度。  相似文献   

3.
参考南海神狐海域SH2站点含水合物地层沉积物颗粒级配分析结果,人工配置试验土骨架,制备不同水合物饱和度(0%,40%,50%,60%)的含四氢呋喃水合物沉积物试样,并在低温环境下进行无侧限压缩试验,获得了不同水合物饱和度试样的应力应变曲线、刚度和强度。结果表明,试样的应力应变曲线呈现应变软化现象,随着水合物饱和度的增加,软化现象更为明显;水合物能够显著增加试样的弹性模量,并随着水合物饱和度的增大而增大;随着水合物饱和度的增加,试样的无侧限抗压强度呈指数增加,与三轴和直剪试验所测得强度的趋势一致。  相似文献   

4.
含水合物土的土水特征曲线和渗透系数对分析水合物开采效率和地层稳定性具有重要意义。通过自我改造而成的含水合物土的土水特征曲线的测试装置,测试了含水合物土(黏质粉土和砂土)的土水特征曲线,研究了水合物形成对土体的土水特征曲线的影响规律和机理,并且分析了含水合物土体的非饱和状态下的渗透系数。试验结果分析表明:水合物形成对含水合物土体的土水特征曲线存在明显影响;随着水合物饱和度的增长,可以看到边界效应段明显增大,过渡段土水特征曲线变得逐渐平缓,非饱和残余段对于残余水饱和度更低,但是VG模型仍能有效的描述含水合物土的土水特征曲线;进气值随着水合物饱和度的增加而增大,而残余有效水饱和度则随之减小,这主要是由于水合物形成改变了沉积物内部的孔隙孔径分布特征。在非饱和状态下,由于渗流通道被气体挤占,含水合物土的相对渗透系数随毛细吸力增加而减小,但是在同样的毛细吸力下,越大的水合物饱和度对应的相对渗透系数越小。  相似文献   

5.
含填充型水合物的砂性能源土可视为特殊的散粒体材料(砂粒和水合物颗粒混合物),具有明显的非连续特征。在离散元中若采用团粒(胶结成团的颗粒组)模拟填充水合物颗粒则需合理确定团粒结构内颗粒间胶结模型参数。为此,基于前人的室内纯水合物三轴试验资料进行离散元建模与参数反演。结果表明,宜采用松散且颗粒间摩擦系数较小的试样模拟水合物块体,当颗粒间摩擦系数小于等于0.0时,可确保无胶结试样的内摩擦角小于室内试验获得的纯水合物内摩擦角。胶结刚度只需在较小范围变化即可反映相同温度不同围压条件下的弹性特性,且微观刚度参数与胶结强度参数的相互作用较小,可以假定二者相互独立。通过选取不同的微观胶结强度值进行不同围压下的三轴压缩试验,建立微观胶结强度参数与宏观参数(内摩擦角和黏聚力)之间的关系,从而确定与室内试验强度特性相符合的微观胶结强度值,实现甲烷水合物三轴试验离散元模拟;由体变规律可知,甲烷水合物在发生剪胀前均存在一个初始的体积收缩阶段,且剪胀特性随着围压的减小而呈现增强趋势。通过微观变量颗粒接触方向组构的分布图可知,随着轴向应变增大,颗粒间接触主方向朝竖直方向偏转,表现出明显的各向异性特性。随着轴向应变的增大,颗粒间胶结残余率变小,表明试样逐步破坏。  相似文献   

6.
海域试开采区域含水合物沉积物的粒度分析结果表明水合物沉积物骨架由粗、细颗粒混合构成,通过开展多组低温、高压三轴排水剪切试验研究细颗粒含量和密度对含甲烷水合物沉积物和无水合物沉积物的强度和变形特性的影响。试验结果表明,含水合物沉积物抗剪强度及剪胀性都随细粒含量提高而显著增强。这是由于细颗粒含量增加改变了颗粒间水合物的样貌和分布特征,形成了由水合物包裹着粗颗粒-细颗粒的团簇状集合体。然而,细颗粒含量对无水合物沉积物的强度和变形特性的影响却表现出相反趋势。另外,含水合物沉积物的剪胀关系可以使用修正剑桥模型中的剪胀关系式进行描述。结果表明,剪胀关系的拟合曲线依赖于水合物饱和度的大小。通过对比研究发现,天然水合物和实验室合成水合物试样在较高饱和度时的峰值摩擦角大小及其伴随水合物饱和度的增长趋势存在差异,这种差异主要来源于水合物在沉积物骨架颗粒孔隙中不同的赋存模式及分布特征。  相似文献   

7.
海域试开采区域含水合物沉积物的粒度分析结果表明水合物沉积物骨架由粗、细颗粒混合构成,通过开展多组低温、高压三轴排水剪切试验研究细颗粒含量和密度对含甲烷水合物沉积物和无水合物沉积物的强度和变形特性的影响.试验结果表明,含水合物沉积物抗剪强度及剪胀性都随细粒含量提高而显著增强.这是由于细颗粒含量增加改变了颗粒间水合物的样貌...  相似文献   

8.
天然气水合物(以下简称水合物)的不当开发可能会带来一系列的地质灾害和环境问题,因此,开展含天然气水合物地层开采过程中的安全稳定性评估显得尤为重要,而建立能有效描述含水合物沉积物的力学行为的本构模型是安全稳定性分析的核心前提。在分析含CO2水合物砂土的三轴力学特性的基础上,把含水合物沉积物视为水合物和土颗粒骨架组成的复合胶结性材料,参考胶结土体的建模思路,引入附加内变量描述水合物对土体的胶结影响,建立了含水合物砂土的屈服函数和非关联流动法则,建立了含水合物砂土的本构模型。通过模型验证及分析,模型能较好地模拟不同围压下和不同水合物含量下含水合物砂土的应力应变曲线,反映含水合物砂土的力学特性。  相似文献   

9.
水合物开采通过打破固相水合物相平衡状态使其分解为水和气体,含水合物沉积物(gas hydrate-bearing sediment,GHBS)固相组分减少使孔隙体积增大,土骨架间胶结作用弱化,产生的水和气显著改变孔隙压力,造成沉积物软化和体积收缩。基于GHBS三轴压缩试验,考虑水合物降压分解过程对GHBS变形特性的影响,将固相骨架分为惰性土骨架和可分解的水合物固相,引入随水合物饱和度变化的压缩参数,建立了能够描述GHBS应力和水合物分解耦合作用、体积应变随时间变化的分析模型。该模型能够描述降压速率、降压幅值及水合物分解速率对GHBS变形特性的影响,结果表明:降压速率增大,降压阶段体积应变速率增大,达到相平衡时间缩短,降压开采时应综合考虑开采过程中储层变形速率和开采效率间的关系;不同粒径组成的沉积物水合物分解速率存在差异,分解速率对储层变形速率影响明显;降压开采稳定孔压影响储层最终沉降量,降低稳定孔压可以提高开采效率,但最终变形量增大。  相似文献   

10.
瓦斯水合固化及采掘扰动对瓦斯水合物–煤体介质体系渗透率影响是瓦斯水合固化防突技术应用的关键问题。为此,采用基于出口端流量的稳态法,利用应力–渗流–化学耦合作用含瓦斯水合物煤体三轴试验机,开展含瓦斯煤体渗透试验(3种含水率和3种粒度)及轴向应力加卸载过程含瓦斯水合物煤体渗透试验,分析水合物生成、加卸载过程有效应力及饱和度对煤体渗透率影响规律并初步探讨其影响机制。研究发现,瓦斯水合物形成后,煤体渗透率明显下降,降低幅度为79%~99%;含瓦斯水合物煤体渗透率与有效应力在加卸载过程符合指数函数关系,卸载过程渗透率变化存在3种模式,分别为少量恢复、部分恢复和卸载增透;加卸载过程含瓦斯水合物煤体渗透率损失率、损伤率均随饱和度增大呈增大趋势。试验发现,瓦斯水合物的形成堵塞煤体渗透通道,限制由瓦斯压力降低导致的瓦斯运移补充,有望快速降低瓦斯压力,缩短石门揭煤工期。  相似文献   

11.
A high-pressure low-temperature plane strain testing apparatus was developed for visualizing the deformation of methane hydrate-bearing sand due to methane hydrate production. Using this testing apparatus, plane strain compression tests were performed on pure Toyoura sand and methane hydrate-bearing sand with localized deformation measurements. From the results, it was observed that the methane hydrate-free specimens, despite their relatively high density, showed changes in compressive volume. Marked increases in the initial stiffness and strength of the methane hydrate-bearing sand were observed (methane hydrate saturation of SMH=60%). Moreover, the volumetric strain changed from compressive to dilative. For the specimens with methane hydrate, a dilative behavior above SMH=0% was observed. An image analysis showed that the shear bands of the methane hydrate-bearing sand were thinner and steeper than those of the host sand. In addition, the dilative volumetric strain in the shear band increased markedly when methane hydrate existed in the pore spaces.  相似文献   

12.
《Soils and Foundations》2019,59(4):814-827
In this study, methane hydrate-bearing sand (MHBS) was created in the laboratory following two methods in order to obtain two types of gas hydrate morphology in sandy sediment. The hydrate morphology in the sediment was assessed by measuring the compressional wave velocity combined with models to predict the wave velocities of the sediment containing gas hydrates. The mechanical properties of the MHBS were investigated by triaxial compression tests. The results obtained by the compressional wave velocity show that after saturating the MHBS sediment (created by the excess gas method) with water, the methane hydrates are partly or completely converted from grain contacts to pore spaces depending on the hydrate saturation (ranging from 0 to 50%). A subsequent temperature cycle completes this conversion process for high hydrate saturation. The results obtained with the triaxial compression tests show higher shear strength, a higher secant Young’s modulus, and a higher dilation angle at higher hydrate saturation. In addition, the effects of hydrate saturation on the mechanical properties of the MHBS obtained by the two procedures (with and without the thermal cycle) are similar at low hydrate saturation. The effect of gas hydrate morphologies can only be detected in the case where the conversion (and/or redistribution) of gas hydrates from grain contacts to pore spaces is not complete (at high hydrate saturation).  相似文献   

13.
Depressurization is an effective method to produce methane gas from methane hydrate reservoirs. However, during gas production, sediments consolidate due to increasing effective stress. Revealing the compressive characteristics of methane hydrate-bearing sands during consolidation is essential for an accurate understanding of sediment properties and for the development of a constitutive model. Therefore, a series of isotropic consolidation tests was performed on sand in which methane hydrate was artificially generated, and its compressibility characteristics were evaluated. Furthermore, to assess prolonged production, creep compressive behavior was investigated. The experimental results showed volumetric strain due to increasing confining stress decreased with increasing initial methane hydrate saturation. Particle crushing during consolidation was inhibited by the presence of methane hydrate. It was confirmed that the increase in the effects of methane hydrate on soil compressibility followed a power function with the increase in methane hydrate saturation. Creep deformation was observed during the stress holding period regardless of the presence of methane hydrate. Creep behavior during the stress holding period was related to the extent to which the creep component had dissipated before the stress holding period in the past. A theoretical concept for creep strain was proposed based on the experimental results.  相似文献   

14.
Methane hydrates (MHs) have been recognized as an important material for use as a new energy resource. Recently, not only MHs, but also carbon dioxide hydrates (CO2-hydrates), have been attracting attention from the viewpoint of CO2 storage in the form of CO2-hydrates. It is essential, therefore, to investigate the mechanical behaviour of gas hydrate-bearing sediments in order to achieve safe MH extraction and to ensure the long-term stability of CO2-hydrate-storaged submarine sediments. In order to gain further knowledge of CO2-hydrate-bearing sediments, we carried out three kinds of laboratory experiments on synthetic CO2-hydrate-bearing sand specimens: (1) undrained triaxial compression tests with a constant strain rate, (2) undrained triaxial compression tests with a step-changed strain rate, and (3) dissociation tests on CO2-hydrate-bearing sand specimens using the thermal stimulation method.The main findings obtained from these three experiments are as follows: First, it was found that CO2-hydrate-bearing sand shows larger strength and larger positive dilatancy than water-saturated sand without CO2-hydrates under undrained conditions. Second, CO2-hydrate-bearing sand clearly exhibits strain rate dependency with an increase in hydrate saturation. It is interesting to note that hydrate saturation’s dependency on strength does not appear in cases where the strain rate is quite slow. Third, a drastic increase in pore pressure and extensive tensile strain are observed simultaneously during the dissociation of CO2-hydrates. The pore gas pressure of CO2, produced by the hydrate dissociation, can exceed the liquefied boundary of CO2-gas, and the increase in pore gas pressure can be limited by the liquefaction of CO2-gas.  相似文献   

15.
天然气水合物以胶结形式广泛赋存于深海能源土中,水合物的饱和度对能源土地基的承载特性影响巨大,水合物的开采也必将使能源土的承载特性发生重大改变。采用考虑水合物胶结厚度的微观胶结模型,分别对3种不同水合物饱和度的能源土地基进行载荷试验离散元模拟。分析水合物开采前后能源土地基的承载特性,研究水合物开采对能源土地基承载特性的影响,探讨基底压力的分布规律。结果表明:水合物开采前,能源土地基的承载力随饱和度的增加而增大。开采后,地基的承载力急剧降低,且原有水合物的饱和度越大,开采后承载力的降低量也越大;水合物饱和度越高,达到极限承载力后,p–s曲线越接近于竖直向下;胶结破坏存在临界荷载,且不同水合物饱和度地基的胶结破坏规律不相同;水合物饱和度对基底压力的分布形状影响不大,但不同沉降量下基底压力的分布形状明显不同。  相似文献   

16.
在饱和土体三轴试验中,反压常被用于提高试样饱和度,其对常规土体强度特性无影响已广为认同,而已有试验资料表明反压对深海能源土强度、弹性模量等宏观力学参数均存在一定影响,成为困扰国际岩土界的一个难题。首先探讨了试验反压对能源土力学特性的影响机理,通过引入能源土微观接触模型的离散元双轴试验检验上述机理的合理性;然后结合20组离散元双轴试验,进一步探究能源土宏观力学特性随反压的变化规律。结果表明:试验反压对能源土力学特性的影响与水合物作用相关;反压能提高能源土强度,使应变软化和剪胀特性更加明显,并对其弹性参数有一定的影响;试验反压较大时,反压变化对能源土强度参数的影响难以忽略,但对弹性参数的影响可忽略。  相似文献   

17.
《Soils and Foundations》2022,62(1):101095
A technique for carbon dioxide (CO2) capture and storage using CO2 hydrates where CO2 is stored as solid hydrates in the seabed ground, is attracting attention. Shallow sediments may be the most suitable seabed ground for CO2 hydrate storage because these unconsolidated soil sediments satisfy the limitation for the low-temperature condition. Hence, the deformation properties and long-term stability of gas hydrate-bearing sediments during and after gas storage must be investigated. In this study, a series of undrained triaxial creep tests were conducted on artificially made CO2 hydrate-bearing sand specimens to study the fundamental time dependent property of hydrate-bearing sediment. We extended an elasto-viscoplastic constitutive model by introducing a cohesion component and its degradation on surfaces and applied the proposed model to creep tests on gas hydrate-bearing sand.Three findings were obtained from the experiments and modelling. First, CO2 hydrate-bearing sand specimens showed accelerated creep behavior, which was characterized by the creep stress ratio level, regardless of the hydrate saturation. Second, creep accelerated under undrained conditions before the stress reached the critical state line obtained from the monotonic loading tests, and the stress ratio at the occurrence of acceleration creep was higher for specimens with a higher hydrate saturation. Third, the elasto-viscoplastic constitutive model which considered the cementing effect of hydrates was able to well reproduce the undrained creep behavior of hydrate-bearing sand with different hydrate saturations under relatively high creep stress levels.  相似文献   

18.
首先,引入笔者等[16-17]所提出的微观胶结模型用以反映能源土颗粒之间水合物微观胶结接触力学特性;其次,采用C++语言将模型程序化,建立同商业软件PFC2D的程序接口,将模型引入离散单元法中;然后,通过简化计算方法确定胶结宽度随水合物浓度的变化规律,进而确定水合物微观胶结参数;最后,根据所确定的胶结参数,针对不同水合物浓度试样进行能源土宏观力学特性离散元双轴试验模拟,并从应力应变、体积应变、水合物对能源土弹性模量的影响等方面与Masui等[4]所进行的能源土室内三轴试验进行对比分析。结果表明:所选择胶结模型及微观胶结参数能有效反映深海能源土宏观力学规律;能源土峰值强度、弹性模量均随水合物浓度增加而增加,体积膨胀随水合物浓度的增加越来越显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号