共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
针对常规燃烧和富氧燃烧两种工况,对反应炉辐射室中的燃烧过程进行了数值模拟,富氧燃烧时空气中氧气摩尔分数为0.34%。模拟结果与实际测量浓度相近,验证了计算模型的有效性。研究结果表明:富氧燃烧能满足管内化学反应对温度控制的要求,与理论混合比燃烧相比,采用富氧燃烧节约燃料12.66%,NOX排放量有所增加。在维持温度场均匀的前提下,提出了燃烧器优化配置方案。 相似文献
3.
4.
5.
6.
7.
8.
9.
空气中含有20.9%的氧和79.1%的氮(体积比)以及少量其它气体。所谓富氧空气是指含氧量大于20.9%的空气。用含氧较多的空气维持燃烧过程就称为富氧燃烧。一、富氧燃烧的节能效果富氧燃烧能够节能的原因是:(一)减少排烟所损失的热量。只有氧才能维持燃烧,空气中所含79%的氮是不能助燃的,当这些氮被鼓入燃烧设备,加热到很高的温度以后排出,带走了大量的热。以冲天炉为例,当炭完全燃烧时,热平衡方程式为:燃科燃烧热=铁水带出热+(排烟损失+炉体散热损失+溶渣损失)。 相似文献
10.
低氧燃烧与富氧燃烧的性能比较分析 总被引:10,自引:1,他引:10
阐述了低氧燃烧和富氧燃烧的基本概念,并且和传统的燃烧方式作了对比,概括了两种燃烧方式的优缺点。分析了两种燃烧方式的实现途径。应根据不同的实际情况选择不同的燃烧方式。 相似文献
11.
12.
H. Haykiri-Acma Y. Cekic 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2019,41(11):1326-1335
Oxygen-enriched combustion of coal has so far been investigated using either entrained flow reactors or fluidized-bed combustors where burning takes place rapidly due to high heating rates. On the contrary, this paper presents the results of slow burning of coal under oxygen-enriched combustion conditions. Ashing behavior of mineral matter-rich low-rank coal from Turkish Tekirdag-Malkara lignite under oxygen-enriched conditions was investigated to determine the effect of this combustion technique on unburnt carbon, mineralogical characteristics and the burning performance. These experiments showed that the influence of O2 concentration on ashing is much more evident than the temperature during oxygen-enriched combustion. 相似文献
13.
14.
The study explored the oxygen-enriched combustion behavior of torrefied waste wood pellets in a fluidized bed. For biomass torrefaction, three indexes, namely energy yield index (EY), proximate analysis-based index (PA), and effective comprehensive combustion index (Smix), are used to present the optimal conditions from each viewpoint. Four operating parameters, incorporating torrefaction temperature, residence time and nitrogen flow rate, were taken into consideration in this study. The signal-to-noise ratios of each parameter were evaluated to examine the influencing impact of different factors. The optimal results were employed in the investigation of biochar combustion using a laboratory-scale fluidized-bed reactor with oxygen lancing. Oxygen was injected into different zones of the fluidized bed to investigate its influence on combustion efficiency. The parameters of biochar combustion optimization include torrefied materials, fluidized-bed temperature, oxygen inlet position, and oxygen concentration. The total fluidized-bed efficiency and the volatile combustion ratio were evaluated. 相似文献
15.
针对废碱焚烧装置的炉膛结构特点及燃烧状况,设计了一套燃烧器自动控制系统;对燃烧器进行合理的分组控制,分析了控制原理,编制了控制电路图及程序流程图等,并对其能达到的节能效果进行了分析。 相似文献
16.
Ge Pu Wending Wang Ruixiang Peng Weilin Zhu Fangyuan Zhao Fanxuan Fu 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2016,38(23):3497-3503
A fixed-bed combustion system was used to study the NO emission characteristics of co-combustion of biomass and coal in an O2/CO2 atmosphere. With the concentration of oxygen varied in 21%, 30%, and 40% while the biomass blended proportion mounts raised from zero to 10% then to 30%, the generated NO was classified to Vdaf-NO and FCad-NO, respectively, and the emission rate and conversion ratio of NO were analyzed. The results showed that the NO emission rate and concentration increased with increase in oxygen concentration, but the conversion ratio decreased. Meanwhile, the blended biomass reduced the NO emission concentration and conversion ratio. 相似文献
17.
18.
19.
Combustion characteristics of Turkish lignites at oxygen-enriched and oxy-fuel combustion conditions
Combustion and oxy-fuel combustion characteristics of two Turkish lignites (Orhaneli and Soma) were investigated by Thermogravimetric Analysis (TGA) method. Experiments were carried out under oxygen-enriched air and oxy-fuel combustion conditions with 21, 30, 40% oxygen concentrations. Three heating rates of 5, 10, and 20 °C/min were considered and the isoconversional kinetic methods of FWO, KAS, and Friedman were employed to estimate activation energies. The uncertainty assessment in obtaining the activation energy values was also considered. The obtained results indicated that the combustion of volatiles at both air and oxy-fuel conditions were approximately identical. However, at air combustion conditions, the decomposition of CaCO3 took place at temperatures above 700 °C. This decomposition process was independent of the oxygen concentration and took place when the temperature reached to a certain threshold. The decomposition of CaCO3 did not accomplish in oxy-fuel conditions as far as the temperature was higher than 900 °C. Combustion in oxy-fuel conditions had higher activation energy values comparing to conventional combustion atmosphere. The activation energy values were approximately unchanged at the start of combustion regardless of oxygen concentration or combustion atmosphere at about 165 kJ/mol and 150 kJ/mol for Orhaneli and Soma lignites, respectively. The apparent activation energies were higher at elevated oxygen concentrations. The uncertainties values related to FWO method were lower than KAS and Friedman methods. The calculated average uncertainty values were found to be at the range of 5–15% for most of the cases. 相似文献