首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Degradation phenomena and inference of their underlying mechanisms during 2 C cycle aging in a cell design comprising {LiMn1/3Ni1/3Co1/3O2 + LiMn2O4} composite positive electrode are studied and reported in this work. We describe how aging phenomena in the cells were studied and incremental capacity analysis applied to infer cell degradation mechanisms in the cycle aging process. Two stages of degradation were observed in the life cycle under this aging regime. In the first stage, we conclude that loss of lithium inventory was the cause of capacity fade. As a result of such parasitic loss, the cell further suffered from loss of active materials in the second stage, in which the positive electrode kinetics was hampered and the capacity loss accelerated.  相似文献   

2.
There is a growing need to explore path dependence of aging processes in batteries developed for long-term usage, such as lithium-ion cells used in hybrid electric vehicle (HEV) or plug-in hybrid vehicle (PHEV) applications that may then be “retired” to be utilized in grid applications. To better understand the foremost influences on path dependence in the PHEV context, this work aims to bridge the gap between ideal laboratory test conditions and PHEV field conditions by isolating the predominant aging factors in PHEV service, which would include, for example, the nature and frequency of duty cycles, as well as the frequency and severity of thermal cycles. These factors are studied in controlled and repeatable laboratory conditions to facilitate mechanistic evaluation of aging processes. This work is a collaboration between Idaho National Laboratory (INL) and the Hawaii Natural Energy Institute (HNEI). Commercial lithium-ion cells of the Sanyo Y type (18650 configuration) are used in this work covering two initial independent studies of path dependence issues. The first study considers how the magnitude of power pulses and charging rates affect the aging rate, while the second seeks to answer whether thermal cycling has an accelerating effect on cell aging. While this work is in early stages of testing, initial data trends show that cell aging is indeed accelerated under conditions of high discharge pulse power, higher charge rates, and thermal cycling. Such information is useful in developing accurate predictive models for estimating end-of-life conditions.  相似文献   

3.
High-energy electrode investigation for plug-in hybrid electric vehicles   总被引:1,自引:0,他引:1  
In addition to the development of high-energy density electrode materials for lithium-ion (Li-ion) batteries, other engineering approaches, such as electrode optimization, should be considered in order to meet the energy requirements of plug-in hybrid electric vehicles (PHEV). This work investigates the impact of the electrode thickness on the energy density of (Li-ion) batteries. The impedance results from the hybrid pulse power characterization (HPPC) test indicate that the electrode resistance is inversely proportional to the electrode thickness. This feature makes it possible to use thicker electrodes in (Li-ion) batteries to meet PHEV power requirements. The practical electrode thickness is determined to be around 100 μm, if considering the electrode mechanical integrity when using conventional PVDF binders. Furthermore, cycle performance shows that cells with a higher loading density have a similar capacity retention to cells with a lower loading density.  相似文献   

4.
This paper introduces a state of charge (SOC) estimation algorithm that was implemented for an automotive lithium-ion battery system used in fuel-cell hybrid vehicles (FCHVs). The proposed online control strategy for the lithium-ion battery, based on the Ah current integration method and time-triggered controller area network (TTCAN), incorporates a signal filter and adaptive modifying concepts to estimate the Li2MnO4 battery SOC in a timely manner. To verify the effectiveness of the proposed control algorithm, road test experimentation was conducted with an FCHV using the proposed SOC estimation algorithm. It was confirmed that the control technique can be used to effectively manage the lithium-ion battery and conveniently estimate the SOC.  相似文献   

5.
There is much confusion and uncertainty in the literature concerning the useable power capability of batteries and ultracapacitors (electrochemical capacitors) for various applications. Clarification of this confusion is one of the primary objectives of this paper. The three approaches most often applied to determine the power capability of devices are (1) matched impedance power, (2) the min/max method of the USABC, and (3) the pulse energy efficiency approach used at UC Davis. It has been found that widely different power capability for batteries and ultracapacitors can be inferred using these approaches even when the resistance and open-circuit voltage are accurately known. In general, the values obtained using the energy efficiency method for EF = 90-95% are much lower than the other two methods which yield values corresponding to efficiencies of 70-75%. For plug-in hybrid and battery electric vehicle applications, the maximum useable power density for a lithium-ion battery can be higher than that corresponding to 95% efficiency because the peak power of the driveline is used less frequently and consequently charge/discharge efficiently is less important. For these applications, the useable power density of the batteries can be closer to the useable power density of ultracapacitors. In all cases, it is essential that a careful and appropriate measurement is made of the resistance of the devices and the comparisons of the useable power capability be made in a way appropriate for the application for which the devices are to be used.  相似文献   

6.
We develop a simplified model to examine the effect of the shape and magnitude of the battery pulse-power capability on capacity usage and battery size. The simplified model expresses the capacity usage and a dimensionless battery area in terms of a dimensionless energy-to-power ratio and a parameter that characterizes the shape of the pulse-power capability. We also present dimensional results that show how the capacity usage depends on the equivalent-electric range and separator area, and how the battery area depends on the equivalent-electric range. Key results include the presence of a Langmuir-like relationship between the capacity usage and the dimensionless energy-to-power ratio, and a linear relationship between the dimensionless energy-to-power ratio and a dimensionless area, with a slope and offset that depend on the shape of the pulse-power capability. We also found that a flat pulse-power capability curve increases capacity usage and decreases battery size, and that two important parameters for battery design are (U − Vmin)Vmin/R, which reflects the maximum power capability, and QV〉, which reflects the battery energy. The results and analysis contained herein are used to help interpret the results from a combined battery and vehicle model, presented in a companion paper.  相似文献   

7.
《Journal of power sources》2002,112(1):236-246
Commercial supercapacitors, also known as ultracapacitors or electrochemical capacitors, from Saft, Maxwell, Panasonic, CCR, Ness, EPCOS, and Power Systems were tested under constant current and constant power discharges to assess their applicability for power-assist applications in hybrid electric vehicles (HEVs). Commercial lithium-ion batteries from Saft and Shin-Kobe were also tested under similar conditions. Internal resistances were measured by electrochemical impedance spectroscopy (EIS), as well as by the “iR drop” method. Self discharge measurements were also recorded. Compared with earlier generations of supercapacitors, the cells showed improved current and power capability. However, their energy densities are still too low to meet goals set by Partnership for a New Generation of Vehicles (PNGV) for HEV propulsion. Cells that use acetonitrile as the electrolyte solvent yield better performance, although safety issues need to be addressed. New high-power lithium-ion batteries show high energy densities, with high power capabilities.  相似文献   

8.
A promising anode material for hybrid electric vehicles (HEVs) is Li4Ti5O12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn2O4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn2O4 cathode materials.  相似文献   

9.
Li1.11(Ni0.40Mn0.39Co0.16Al0.05)0.89O2 was synthesized through coprecipitation of a mixed hydroxide followed by calcination with LiOH·H2O during 10 h at 500 °C and 950 °C. Electrochemical tests and their comparison with those obtained for an industrial Li(Ni1−yzCoyAlz)O2 material reveal that Li1.11(Ni0.40Mn0.39Co0.16Al0.05)0.89O2 shows good charge-discharge performance, even at high rate according to a protocol well established by car-makers for testing power abilities of batteries for electric and hybrid electric vehicles. In addition, this material shows a significant improvement in thermal stability in the highly deintercalated state (charged state of the battery) over the industrial material. Equivalent (or higher) energy and power densities with a significantly greater thermal stability make of Li1.11(Ni0.40Mn0.39Co0.16Al0.05)0.89O2 an interesting candidate as positive electrode material for large lithium-ion batteries.  相似文献   

10.
In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation.The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).  相似文献   

11.
Understanding of the thermal and mechanical behaviour of conformal tanks when utilized in cryogenic fuel storage is considered crucial in the hypersonic aircraft sector. This behaviour is strongly dependent on the way the tank itself is designed. This study focuses on the effect of design on the performance of an innovative Type IV multi-spherical composite-overwrapped pressure vessel at both ambient and cryogenic conditions. A method to evaluate the required number of reinforcement rings at the intersections and thus avoid damage in those regions under pressurization is outlined. A thermo-mechanical FE-based model coupled with a progressive failure analysis (PFA) algorithm enables to evaluate the pressure window of the multi-sphere at ambient conditions. Additionally, a transient analysis -included in this study-is used to determine the different heat transfer mechanisms, temperature and strain evolution at the tank wall throughout cryogenic operation (chill-down, pressure cycling and purging). The temperature dependency of the tank wall materials is obtained by coupon testing and fitting functions and is hereby incorporated in the analysis. The most important outcome here is the absence of damage in the composite overwrap at cryogenic environments; this may be considered as a positive indication about the suitability of the Type IV multi-spherical COPVs for cryogenic storage.  相似文献   

12.
This study investigates the influence of the organic expander component (Vanisperse A) and of BaSO4 on the performance of negative lead-acid battery plates on high-rate partial-state-of-charge (HRPSoC) cycling. Batteries operating in the HRPSoC mode should be classified as a separate type of lead-acid batteries. Hence, the additives to the negative plates should differ from the conventional expander composition. It has been established that lignosulfonates are adsorbed onto the lead surface and thus impede the charge processes, which results in impaired reversibility of the charge-discharge processes and hence shorter cycle life on HRPSoC operation, limited by sulfation of the negative plates. BaSO4 exerts the opposite effect: it improves the reversibility of the processes in the HRPSoC mode and hence prolongs the cycle life of the cells. The most pronounced effect of BaSO4 has been registered when it is added in concentration of 1.0 wt.% versus the leady oxide (LO) used for paste preparation. It has also been established that BaSO4 lowers the overpotential of PbSO4 nucleation. The results of the present investigation indicate that BaSO4 affects also the crystallization process of Pb during cell charging. Thus, BaSO4 eventually improves the performance characteristics of lead-acid cells on HRPSoC cycling.  相似文献   

13.
This paper proposes a new robust controller design of heat pump (HP) and plug-in hybrid electric vehicle (PHEV) for frequency control in a smart microgrid (MG) system with wind farm. The intermittent power generation from wind farm causes severe frequency fluctuation in the MG. To alleviate frequency fluctuation, the smart control of power consumption of HP and the power charging of PHEV in the customer side can be performed. The controller structure of HP and PHEV is a proportional integral derivative (PID) with single input. To enhance the performance and robustness against system uncertainties of the designed controller, the particle swarm optimization based-mixed H2/H control is applied to design the PID controllers of HP and PHEV. Simulation studies confirm the superior robustness and frequency control effect of the proposed HP and PHEV controllers in comparison to the conventional controller.  相似文献   

14.
The structure of thick lead dioxide deposits (approximately 1 mm) formed in conditions likely to be met at the positive electrode during the charge/discharge cycling of a soluble lead-acid flow battery is examined. Compact and well adherent layers are possible with current densities >100 mA cm−2 in electrolytes containing 0.1–1.5 M lead(II) and methanesulfonic acid concentrations in the range 0–2.4 M; the solutions also contained 5 mM hexadecyltrimethylammonium cation, C16H33(CH3)3N+. From the viewpoint of the layer properties, the limitation is stress within the deposit leading to cracking and lifting away from the substrate; the stress appears highest at high acid concentration and high current density. There are, however, other factors limiting the maximum current density for lead dioxide deposition, namely oxygen evolution and the overpotential associated with the deposition of lead dioxide. A strategy for operating the soluble lead-acid flow battery is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号