首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-1500热物理模拟实验机对4032铝合金进行等温压缩实验,研究应变速率在0.02s-1~5s-1和变形温度为370℃~490℃的4032铝合金的热变形特征,并根据材料动态模型构建4032铝合金的热加工图.应用OLYMPUS PMG3型光学显微镜观察分析压缩后试样的微观组织.研究表明:4032铝合金最佳热加工工艺参数为:变形温度460℃~490℃,应变速率0.03s-1~0.36s-1;4032铝合金热加工的软化机制主要是动态回复.  相似文献   

2.
将7005铝合金在变形温度为300~500°C、应变速率为0.05~50 s-1的条件下进行等温压缩实验,研究材料的流变应力行为及微观组织演变规律,使用金相显微镜(OM)、透射电子显微镜(TEM)、电子背散射花样(EBSD)等方法观察、分析热压缩试样。通过计算得到7005铝合金的激活能为147 kJ/mol,与纯铝的晶格自扩散能(142kJ/mol)相近。7005铝合金热变形过程中主要的恢复机制为动态回复。在高应变速率(50 s-1)条件下,试样由于变形温升的影响会发生流变软化。经过温升修正后,在较高变形温度下材料依然存在软化现象。通过微观组织分析可知,该现象主要与材料动态回复过程中晶界迁移引起的晶粒粗化有关。  相似文献   

3.
在变形温度为300~460℃,应变速率为0.001~1.000 s-1的条件下,采用Gleeble-1500热模拟试验机对7B50铝合金的热变形加工行为进行了研究.结果表明,7B50铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大.对该合金进行热变形加工的适宜条件是:热压缩加工温度为380~460℃、应变速率为0.100~1.000 s-1.在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶.随着温度升高和应变速率降低,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

4.
6061铝合金高温拉伸流变行为   总被引:1,自引:0,他引:1  
利用Gleeble3500热模拟试验机对6061铝合金进行高温拉伸实验,研究变形温度为365℃~565℃和应变速率为0.01s-1~1s-1条件下6061铝合金的高温拉伸流变行为。结果表明,6061铝合金属于正应变速率敏感材料,流变应力随应变速率的增加而增大,随温度的增加而降低;通过线性回归分析计算6061铝合金的应力指数n及变形激活能Q,获得其高温拉伸条件下的流变应力本构方程。  相似文献   

5.
采用Gleeble-1500D热模拟机研究了7055铝合金在应变速率为0.01、0.1和1s-1、变形温度为300~450℃,最大真应变为0.7条件下的高温塑性变形行为,分析了合金流变应力与应变速率、变形温度之间的关系,计算了合金高温塑性变形时的变形激活能,并观察了合金变形过程中显微组织变化情况。结果表明:合金在热变形过程中流变应力随温度的升高而减小,随应变速率的增加而增大,7055铝合金的高温塑性变形行为可以用包含Zener-Hollomon参数的流变应力方程进行描述。该合金在实验条件范围内热变形以动态回复为主要软化机制并伴随极少量的再结晶发生。  相似文献   

6.
为了改善6061+Er铝合金的热加工性,通过扫描电镜、透射电镜和Gleeble-3800热模拟试验机,研究了6061+Er铝合金的微观组织,以及当变形温度为375~500℃、应变速率为0.001~10 s^(-1)时的热变形行为。结果表明,锻态6061+Er铝合金中存在微米级初生Al_(3)Er相和起弥散强化效果的纳米级次生AlEr相。建立了6061+Er铝合金热压缩变形过程中的流变应力本构方程,当应变速率为0.001~10 s^(-1)、变形温度为375~500℃时,流变应力计算值与峰值真应力实测值的误差<10%,验证了流变应力本构方程的准确性和可靠性。6061+Er铝合金适宜的热加工范围为:变形温度为375~400℃、应变速率为0.001~0.01 s^(-1)。  相似文献   

7.
孙广智 《铸造技术》2015,(3):622-624
采用电子万能实验机对橄榄球帽用6061铝合金进行热压缩变形实验,通过光学电镜分析该合金组织变化规律。结果表明,6061铝合金为典型柱状晶结构,应力-应变曲线满足动态再结晶过程。当变形量为60%,应变速率一定时,D2动态再结晶晶粒尺寸和X动态再结晶体积分数均随温度的升高而增加,但D1再结晶晶粒尺寸和Dc最大晶粒尺寸差随温度升高而变小;当温度一定时,D2动态再结晶晶粒尺寸和X动态再结晶体积分数均是随应变速率的变大而不断降低,而D1再结晶晶粒尺寸和Dc最大晶粒尺寸差随温度的增加而变小,随应变速率的变大而变大。  相似文献   

8.
在Zwick/Roell Z020万能材料试验机上实施高温压缩试验,研究铝合金6061在变形温度范围为360~480℃,应变速率在0.001~1s-1时的热变形行为。基于动态材料模型理论,利用matlab进行三次样条插值,获取足够的数据利用origin软件绘制铝合金6061的功率耗散图。利用功率耗散图分析确定了试验参数范围内热变形过程的最佳工艺参数。在加工温度为360~440℃,应变速率为0.001~0.01s-1之间,功率耗散率的最大值为0.39,是该合金的最佳成形区域。  相似文献   

9.
6061铝合金低温快速流变行为的研究   总被引:11,自引:0,他引:11  
采用圆柱体试样,在Gleeble-1500型动态热模拟试验机上进行低温快速压缩试验,研究了6061铝合金低温下快速变形的流变行为,并分析了其变形组织。结果表明,6061铝合金的流变应力随变形温度升高而降低,随应变速率提高而增大;在高应变速率下,发生了不连续动态再结晶;温升强烈地受变形程度的影响;低温快速变形可获得晶粒细小的组织。  相似文献   

10.
6061铝合金热变形行为的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟实验机研究了6061铝合金在变形温度573~773 K、应变速率0.01~2 s-1、最大变形程度45%条件下的高温压缩变形行为,分析了合金在高温变形过程中流变应力与应变速率和变形温度之间的关系,建立了6061铝合金高温变形的本构关系.结果表明:合金的流变应力随变形温度的升高而降低,随应变速率的增大而增大;试验条件下,该合金的流变行为可用Zener-Hollomon参数来描述,变形激活能为236.858 kJ/mol,应力指数为8.926.  相似文献   

11.
以TA1/6061铝合金双金属为研究对象,采用Gleebe-3800热模拟试验机,在变形温度为350~500℃、应变速率为0.01~1 s-1、变形量为40%的条件下进行了单向热压缩复合试验,研究了TA1/6061铝合金双金属的热变形行为,建立了TA1/6061铝合金双金属本构方程及热加工图。结果表明,TA1/6061铝合金双金属热变形过程中的流变应力随着温度的上升和应变速率的降低而减小;基于试验数据建立的Arrhenius本构方程可以有效预测特定真应变下的真应力,其相关性系数为0.99642,热变形激活能为231434 J·mol-1;基于热加工图、SEM图像和EDS线扫描图像,确定最优热加工工艺窗口为:变形温度为482~500℃,应变速率为0.011~0.192 s-1。  相似文献   

12.
铝合金6061的热变形力学行为与微观组织演化规律   总被引:1,自引:0,他引:1  
对于具有柱状晶的铝合金6061进行了圆柱体热压缩实验研究。通过实验获得了该种材料在不同温度不同应变速率条件下的真应力-应变曲线以及动态再结晶和晶粒细化的规律。应用峰值应力的实验结果计算出了该材料热变形过程的激活能,计算了每个实验条件的Z参数,得到了铝合金6061的热变形过程以及动态再结晶过程的主要特征变量作为Z参数的函数表达式。结果表明,当Z参数等于2×1026/s时热压缩实验过程动态再结晶引起的晶粒细化效果最好。  相似文献   

13.
6061铝合金材料常数的研究   总被引:2,自引:1,他引:2  
通过热压缩试验,研究了6061铝合金材料的流动应力与温度、应变速率和应变之间的关系。根据试验数据,采用一元线性回归方法,确定了该材料的常数,如:激活能Q、应力指数n、应力水平参数α和结构因子A。研究表明,高温压缩变形时,6061铝合金的软化中动态回复是主要的;6061铝合金是正应变敏感材料。  相似文献   

14.
采用Gleeble-3800型热模拟试验机进行压缩试验,变形温度为320~480℃、应变速率为0.1~1 s-1.压缩方向与7A04铝合金棒材轴向分别成0°、45°、90°.结果表明:7A04铝合金高温变形的流变应力随温度的升高和应变速率的降低而减小;在低温(T=320℃)和小应变速率(ε=0.1 s-1)的条件下7A04铝合金的各向异性最明显;在高温(T=480℃)和小应变速率(ε=0.1 s-1)的条件下,7A04铝合金的各向异性最不明显.  相似文献   

15.
文章根据热压缩试验数据,应用一元线性回归和多元线性回归方法,研究了6061铝合金材料的流动应力与温度、应变速率和应变之间的关系,并根据试验数据确定了6061铝合金材料的本构方程。研究表明,6061铝合金热压缩塑性变形时的流变应力和应变速率之间的关系满足双曲正弦函数关系式;其热压缩塑性变形时流变应力的双曲正弦对数项与绝对温度倒数之间满足线性关系,其高温压缩变形受热激活能的控制。  相似文献   

16.
采用BC路径对6061铝合金进行了4道次等径角挤压,研究了在应变速率为0.05~0.50 s-1、等温处理温度为603~629℃条件下的半固态等温压缩特性,分析了变形温度及应变速率对真应力-真应变曲线的影响。结果表明,等温压缩过程中,6061铝合金的流动应力随变形温度的升高而降低,随应变速率的增加而升高;在变形过程中出现固-液偏析现象,变形较大时固-液偏析现象较明显。  相似文献   

17.
《塑性工程学报》2015,(2):95-99
利用Gleeble-3500热模拟实验机,对6061铝合金在变形温度为350℃、400℃、430℃、460℃、480℃和500℃,应变速率为0.001s-1、0.01s-1、0.1s-1、1s-1和10s-1条件下进行高温压缩实验,得到的真应力-真应变曲线形态基本符合铝合金的热变形力学特征。采用Arrhenius双曲正弦关系描述6061铝合金的高温流变行为,确定其激活能Q=163.4366kJ·mol-1;基于动态材料模型理论绘制6061铝合金热加工图,确定其最佳热加工区域温度为T=420℃~450℃。  相似文献   

18.
对高硅铝合金光谱标准样品在应变速率为0.01~1s-1、变形温度为350~500℃条件下的热压缩变形行为进行实验研究。结果表明:高硅铝合金热压缩变形中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的增加而降低;通过线性回归分析计算出高硅铝合金材料的应变硬化指数n以及变形激活能Q,获得了高硅铝合金高温条件下的流变应力本构方程;研究工艺参数(变形温度t、应变速率ε)对晶粒尺寸的影响,确定最佳工艺参数:t=400℃,ε=0.1s-1。  相似文献   

19.
通过Gleeble-3500热压缩模拟试验机对6061铝合金进行热压缩实验,借助金相显微镜和透射电子显微镜研究合金在变形温度为340℃?490℃,应变速率为0.001s-1?1s-1条件下热变形和动态再结晶行为。结果表明:合金的动态再结晶行为对变形温度和应变速率十分敏感,温度的升高和应变速率的减小都会促进动态再结晶的发生。基于峰值应力建立了合金热变形本构方程,计算得出热变形激活能为235.155kJ·mol-1。采用加工硬化率-流变应力曲线确定了合金热变形过程中的临界应力(应变)和峰值应力(应变)与Z参数的关系模型。随着温度的升高和应变速率的减小,DRX临界应力(应变)和峰值应力(应变)而减小。依据Avrami方程建立了合金动态再结晶体积分数模型,动态再结晶体积分数随应变的增加,呈现先缓慢增加后迅速增加再缓慢增加的特征,所建模型能够较为准确的预测该合金的动态再结晶行为。  相似文献   

20.
采用Gleeble-3800热模拟机,沿与原材料轴线呈0°、45°、90°方向切割试样,在320、400和480℃,变形速率0.01、0.1和1/s时对7075铝合金进行试验。研究了温度、应变速率对7075铝合金热变形过程中力学性能及显微组织的影响。结果表明:在同一应变速率下,7075铝合金的流变应力和进入稳态流动时所需的应变随温度的升高而降低;在低温成形时,晶粒的形状连续而均匀;随着变形温度升高,晶粒逐渐变得粗大;在较高温度变形时,大晶粒周围有细小的等轴晶出现,发生了动态再结晶。在同一变形温度下,7075铝合金的流变应力随应变速率的增大而提高;应变速率越大,越易出现动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号