首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用间氨基苯甲酸为原料,经重氮化-偶联反应对杯[4]芳烃进行上沿改性合成了间羧基苯偶氮基杯[4]芳烃衍生物,再通过取代反应对间羧基苯偶氮基杯[4]芳烃衍生物进行下沿修饰,制备出一种新型材料,即间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物,并采用FT-IR和~1H-NMR对其进行结构表征。将该新型材料作为吸附剂用于吸附低浓度含铀水溶液中的铀,考察了溶液pH值、吸附剂用量、铀初始浓度、吸附时间、吸附体系温度等因素对其吸附性能的影响。结果表明:在铀初始浓度为10 mg/L、pH=4、温度为25℃、吸附剂用量为10 mg、吸附平衡时间为4 h时,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物对U(Ⅵ)的吸附效果最佳;其吸附过程符合准二级动力学模型,吸附过程为化学吸附;吸附等温线符合Langmuir吸附等温模型,说明该吸附体系是以单层吸附为主。综上所述,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物是一种潜在的铀吸附剂。  相似文献   

2.
研究以对叔丁基苯酚和甲醛等作为初始原料合成中间体对叔丁基杯[4]芳烃、杯[4]芳烃和异丙氧基杯[4]芳烃;以二缩三乙二醇和氯化亚砜等作为初始原料合成中间体二氯代三甘醇、五甘醇和五甘醇对甲苯磺酸酯.最后,由异丙氧基杯[4]芳烃和五甘醇对甲苯磺酸酯合成了目标产物二(2-丙氧基)杯[4]冠-6,对合成的各种中间体和目标产物进行了表征.  相似文献   

3.
研究以对叔丁基苯酚和甲醛等作为初始原料合成中间体对叔丁基杯[4]芳烃、杯[4]芳烃和异丙氧基杯[4]芳烃;以二缩三乙二醇和氯化亚砜等作为初始原料合成中间体二氯代三甘醇、五甘醇和五甘醇对甲苯磺酸酯。最后,由异丙氧基杯[4]芳烃和五甘醇对甲苯磺酸酯合成了目标产物二(2-丙氧基)杯[4]冠-6,对合成的各种中间体和目标产物进行了表征。  相似文献   

4.
采用间氨基苯甲酸为原料,经重氮化-偶联反应对杯[4]芳烃进行上沿改性合成了间羧基苯偶氮基杯[4]芳烃衍生物,再通过取代反应对间羧基苯偶氮基杯[4]芳烃衍生物进行下沿修饰,制备出一种新型材料,即间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物,并采用FT-IR和1H-NMR对其进行结构表征。将该新型材料作为吸附剂用于吸附低浓度含铀水溶液中的铀,考察了溶液pH值、吸附剂用量、铀初始浓度、吸附时间、吸附体系温度等因素对其吸附性能的影响。结果表明:在铀初始浓度为10 mg/L、pH=4、温度为25 ℃、吸附剂用量为10 mg、吸附平衡时间为4 h时,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物对U(Ⅵ)的吸附效果最佳;其吸附过程符合准二级动力学模型,吸附过程为化学吸附;吸附等温线符合Langmuir吸附等温模型,说明该吸附体系是以单层吸附为主。综上所述,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物是一种潜在的铀吸附剂。  相似文献   

5.
合成了对叔丁基杯 [8]芳烃乙酸衍生物。在 (30± 1 )℃ ,I =0 1mol/kg条件下 ,研究了它对Fe3 、La3 的萃取性能 ;用斜率法研究了萃取反应机理 ,得到了萃取反应平衡常数 ,并发现该萃取剂对Fe3 、La3 存在着两种不同的萃取机理。  相似文献   

6.
以氨基化改性磁性纳米Fe_3O_4粒子为载体,将杯[4]芳烃胺肟衍生物进行磁性功能化改性,制备得到立体构象稳定、与UO_2~(2+)空间配位构型匹配的杯[4]芳烃胺肟衍生物磁性功能材料(MFM-AOCA)。并采用红外光谱、扫描电镜进行了结构表征。考察了溶液pH值、铀初始浓度、MFM-AOCA用量和吸附时间等因素对吸附的影响。结果表明:杯[4]芳烃胺肟衍生物磁性功能修饰后,具有较大的比表面积,其吸附铀的最佳条件是pH值为3.5、铀初始浓度为40 mg/L、吸附剂用量为40 mg和吸附时间为3.5 h。吸附动力学模型和吸附等温模型研究表明,MFM-AOCA对铀的吸附动力学过程符合准二级动力学模型,所得到的相关系数大于0.99;吸附等温线符合Langmuir等温线模型,其最大理论吸附量为141.28 mg/g。使用3种不同的解吸剂对MFM-AOCA解吸再生6次后,其对铀的吸附率均在80%以上,说明该MFMAOCA具有良好的再生性能。  相似文献   

7.
本工作制备了相转移催化剂取代杯[6]芳烃:对磺酸杯[6]芳烃和对叔丁基杯[6]芳烃,并以其为催化剂进行了18F-FET的制备。结果表明,对磺酸杯[6]芳烃作催化剂不仅能够催化FET前体的19F取代反应,而且能够催化FET前体对(对甲苯磺酸酯)乙基苯甲酰(BOC)氨基酸酯的18F标记反应,放化产率为11%。而对叔丁基杯[6]芳烃对催化FET前体的19F取代反应和18F的标记反应均没有催化活性。对磺酸杯[6]芳烃的催化作用可能与它的磺酸基参与络合反应,增大了杯[6]芳烃极性等因素有关。虽然对磺酸杯[6]芳烃催化FET前体的放化产率远低于Kryptofix 2.2.2,但该研究对优化条件找出更好的取代杯[6]芳烃催化剂具有重要的指导意义。  相似文献   

8.
本文叙述了溶剂种类、酸度和冠醚浓度诸因素对二环己基18冠6(DCH 18 C 6)萃取铀、钚等元素的影响,着重研究了常量铀的萃取行为。结果表明,1,1,2—三氯乙烷作溶剂时,DCH18 C 6对微量铀或常量铀均能萃取。在硝酸体系形成的萃合物中,Pu(Ⅳ)和U(Ⅵ)与二环己基18冠6的分子比分别为2和1。DCH 18 C 6-1,1,2—三氯乙烷能够从含有U(Ⅵ)和U(Ⅳ)的3—5 M HCl溶液中单独萃取U(Ⅵ)而不萃取U(Ⅳ)。  相似文献   

9.
对-叔丁基杯[4]芳烃酮的激光光解研究   总被引:2,自引:0,他引:2  
为了探讨杯芳烃及其衍生物作为聚合物稳定剂的稳定机理,用激光光解技术研究了308nm激发光条件下,对-叔丁基杯[4]芳烃酮的环已烷溶液在室温下的激光光解行为。观察到300nm、340nm、460nm和540nm4个主要吸收峰,其中,300nm和460nm分别确定为酚氧自由基和阳离子自由基的吸收峰。研究发现,酚氧自由基的生成是单光子电离过程和双光子电离过程共同作用的结果。同时讨论了对-叔丁基杯[4]芳烃酮的阳离子自由基在460nm的吸收峰随溶剂和pH值变化的趋势。结果表明,对-叔丁基杯[4]芳烃酮受到激发后形成相对稳定的酚氧自由基是其作为聚合物稳定剂的原因之一。  相似文献   

10.
对叔丁基杯[4]芳烃乙酸对铀(Ⅵ)的萃取研究   总被引:5,自引:0,他引:5  
合成了对叔丁基杯「4」芳烃及其衍生物对叔丁基杯「4」芳烃乙酸,研究了对叔丁基杯「4」芳烃乙酸对铀酰离子的萃取。测定了不同酸度和不同萃取剂浓度对分配比的影响。确定其萃合物组成为UO2H2L。求出了萃取反应平衡常数,讨论了萃取机理。  相似文献   

11.
近年来,国内多采用磷酸三丁脂、乙酸乙酯~([1])和三辛基氧膦(TOPO)萃取法~([2])。及激光荧光法~([3])测定尿和水中铀。文献[4]较全面地介绍了铀的荧光法测定。文献[5]报道了使用三烷基(混合)氧膦(TRPO)代替TOPO萃取和Br-PADAP分光光度法测定矿石、矿渣中的微量铀,取得了与TOPO同样的分离效果。文献[6]较详细地研究了用TRPO从高放废水中萃取U、Np、Pu、Am、Cm、Pm和Tc,探讨了用这种方法处理超铀废水的可能性。TRPO为磷肥厂产品,较TOPO价廉易得。  相似文献   

12.
设计合成具有较强铀酰离子结合能力、较快吸附动力学的多孔框架配合物对于海水中铀吸附具有重大的意义。利用对叔丁基磺酰基桥联杯[4]芳烃(H4TC4A SO2)、六水氯化钴和1,3 二(2H 四氮唑 5 基)苯(H2L)在溶剂热的条件下构筑了一例长方体状杯芳烃基多孔配位笼(Co16),并用于对海水中铀酰离子的吸附。对Co16吸附剂进行U(Ⅵ)吸附实验发现,Co16吸附剂在较宽的pH范围内对U(Ⅵ)具有优异的吸附能力,并在90 min内达到吸附平衡,且符合准二级动力学模型。吸附等温线较好地符合Langmuir模型,表明Co16吸附剂对U(Ⅵ)的吸附属于单层吸附,且对U(Ⅵ)的吸附容量高达54731 mg/g。热力学实验表明,Co16吸附剂对U(Ⅵ)的吸附属于自发吸热的行为。把该材料置于真实海水中20 d后,其在真实海水中的吸附容量可达488 mg/g。以上结果表明,Co16吸附剂在海水铀吸附方面具有巨大的应用潜力。  相似文献   

13.
合成了对叔丁基杯[4]芳烃及其衍生物乙酰基甲氧基对叔丁基杯[4]芳烃(简称L)。研究了萃取剂L对各种金属离子的萃取,发现该试剂对Na ̄+有特殊的萃取效率,测定了L萃取Na ̄+的萃取平衡常数,并讨论了其萃取机理。  相似文献   

14.
以正辛醇作稀释剂,二环己基18冠醚-6(DCH18C-6)和异丙氧基杯[4]冠-6(IPR-C[4]C-6)作为萃取剂进行了从硝酸介质中共萃取分离Sr和Cs的研究.研究了萃取剂浓度、硝酸浓度、温度等因素对Sr, Cs的萃取性能影响.研究结果表明,2种萃取剂相互之间没有明显的协萃作用,分别独立进行对Sr和Cs的萃取.通过选择合适的萃取和反萃条件可以满足体系对Sr, Cs的萃取和反萃要求.  相似文献   

15.
选择了15种单一稀释剂和4种混合稀释剂,分别研究它们对异丙氧基杯[4]冠 6的溶解性能和在不同酸度下对异丙氧基杯[4]冠 6萃取铯的影响。研究结果表明:正辛醇、苯甲醇、环己酮、硝基苯基甲基醚做稀释剂时可较好萃取铯离子,萃取体系对于模拟高放废液中其它离子的萃取率很低。  相似文献   

16.
本文研究了6种不同结构的烷基膦酸二烷基酯对于U(Ⅵ),Pu(Ⅳ)的萃取行为,分别用离子交换法和萃取法测定了1.0mol/l HNO_3中U(Ⅵ)和Pu(Ⅳ)的络合度,求出了不同温度下各种萃取剂萃取U(Ⅵ)和Pu(Ⅳ)的表观平衡常数以及萃取过程的热力学函数△H,△G,△S。结果表明,不同取代基的萃取剂在萃取能力上的差别主要来自取代基的空间位阻效应,具有一定空间位阻的萃取剂可以在一定程度上改善U(Ⅵ)和Pu(Ⅳ)的萃取分离。  相似文献   

17.
HDEHP从磷酸介质中萃取U(Ⅵ)的动力学研究   总被引:7,自引:0,他引:7  
本文采用恒界面搅拌池法研究了磷酸介质中二-(2-乙基己基)磷酸-环己烷萃取U(Ⅵ)的扩散过程动力学。由测定搅拌速率和温度对萃取速率的影响表明,在较浓的磷酸介质(如4.0mol/lH_3PO_4)中,萃取过程属扩散控制,而在较稀的磷酸介质(如0.5mol/l H_3PO_4)中,萃取过程为化学反应所控制。在扩散控制条件下,通过测定不同萃取条件对萃取速率的影响,可认为在一定磷酸浓度下萃取速率方程为: R_F=K_D[UO_2~(2+)][(HA)_2]_((0))6~(3/2)  相似文献   

18.
合成了对叔丁基杯[4]芳烃及其衍生物--对叔丁基杯[4]芳烃乙酸,并研究了其对钍(Ⅳ)离子的吸附性能。紫外光谱法研究表明,杯芳烃衍生物在pH=3、30℃下震荡2h后达到吸附平衡,对钍离子的吸附率达72%,吸附容量为9.0mg/g。干扰离子研究结果显示,带羧基的杯芳烃衍生物有望成为钍(Ⅳ)离子的良好吸附剂。  相似文献   

19.
本文在带有阴阳极的恒界面池中研究了HNO_3-N_2H_5NO_3(H_2O)/UO_2(NO_3)_2-HNO_3(30%TBP-煤油)体系中U(Ⅵ)电还原动力学。这是U(Ⅵ)电还原反萃动力学研究的第一步。测定了两相溶液中各组分浓度对U(Ⅵ)电还原速率的影响。根据实验所得数据,经回归分析得到U(Ⅵ)电还原动力学微分方程: -(d[U(Ⅵ)]/dt)=k[U(Ⅵ)]_0~(1.294)[HNO_3]_0~(0.0143)[HNO_3]_α~(0.322)[N_2H_5~+]_α~(0.0178)式中k为速度常数,25℃时,k=1.816×10~(-4)。研究了阴极电位、操作温度、两相搅拌速率和界面面积对U(Ⅵ)电还原速率的影响。选定了公称实验条件,将U(Ⅵ)电还原速率与“比”实验条件进行关联,得到如下的经验方程: r=r_0[E]~(1.589)[T]~(0.155)[W]~(0.078)[A]~(0.265)式中r_0为公称实验条件下U(Ⅵ)电还原速率。在本文实验范围内,U(Ⅵ)电还原过程由电极反应控制。  相似文献   

20.
选择了15种单一稀释剂和4种混合稀释剂,分别研究它们对异丙氧基杯[4]冠-6的溶解性能和在不同酸度下对异丙氧基杯[4]冠-6萃取铯的影响。研究结果表明:正辛醇、苯甲醇、环己酮、硝基苯基甲基醚做稀释剂时可较好萃取铯离子,萃取体系对于模拟高放废液中其它离子的萃取率很低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号