首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of adding mixtures of titania and zirconia on the methanol synthesis activity and selectivity of Cu/SiO2 were investigated. The synthesis of methanol from both CO/H2 and CO2/H2 mixtures was examined at 0.65 MPa and temperatures between 448 and 573 K. For CO hydrogenation, the addition of ZrO2 alone increased the methanol synthesis activity of Cu/SiO2 by up to three-fold. Substitution of a portion of the ZrO2 by TiO2 decreased the methanol synthesis activity of the catalyst relative to that observed when only ZrO2 is added. ZrO2 addition also enhanced the methane synthesis activity by as much as seven fold. In the case of CO2 hydrogenation, the maximum methanol synthesis activity is achieved when a 50/50 wt% mixture of ZrO2 and TiO2 is added to Cu/SiO2. Neither the presence of the oxide additive nor its composition had any effect on the activity of the reverse water–gas-shift reaction, which suggests that this reaction proceeds only on Cu. The observed effects of ZrO2 and TiO2 on the catalytic activity of methanol synthesis from CO and CO2, and methane synthesis from CO, are interpreted in terms of the strength and concentration of acidic and basic groups on the surface of the dispersed oxide.  相似文献   

2.
Effects of catalyst composition have been studied for Cu/support and Cu/ZnO/supports in methanol synthesis from CO2/H2. A strong effect of support has been observed. Different supports brought about different behavior in temperature-programmed reduction of copper, different copper surface areas, and different catalytic activity and selectivity. It seemed possible to find catalyst supports that might perform better than commercial Cu/ZnO/Al2O3 catalysts. A correlation was observed between catalytic activity and the copper surface area which was varied by using different supports. However, the sup]>orts appeared to influence other catalytic properties as well, for example, the surface oxygen coverage.  相似文献   

3.
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism.  相似文献   

4.
A new synthesis method of low-temperature methanol proceeded on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2 using 2-butanol as promoters. The Cu/ZnO/Al2O3 catalysts were prepared by co-impregnation of r-Al2O3 with an aqueous solution of copper nitrate and zinc nitrate. The total carbon turnover frequency (TOF), the yield and selectivity of methanol were the highest by using the Cu/ZnO/Al2O3 catalyst with copper loading of 5% and the Zn/Cu molar ratio of 1/1, which precursor were not calcined, and reduced at 493 K. The activity of the catalysts increased due to the presence of the CuO/ZnO phase in the oxidized form of impregnation Cu/ZnO/Al2O3 catalysts. The active sites of the Cu/ZnO/Al2O3 catalyst for methanol synthesis are not only metallic Cu but also special sites such as the Cu–Zn site, i.e. metallic Cu and the Cu–Zn site work cooperatively to catalyze the methanol synthesis reaction.  相似文献   

5.
The effect of ZnO/SiO2 in a physical mixture of Cu/SiO2 and ZnO/SiO2 on methanol synthesis from CO2 and H2 was studied to clarify the role of ZnO in Cu/ZnO-based catalysts. An active Cu/SiO2 was prepared by the following procedure: the Cu/SiO2 and ZnO/SiO2 catalysts with a different SiO2 particle size were mixed and reduced with H2 at 523-723 K, and the Cu/SiO2 was then separated from the mixture using a sieve. The methanol synthesis activity of the Cu/SiO2 catalyst increased with the reduction temperature and was in fairly good agreement with that previously obtained for the physical mixture of Cu/SiO2 and ZnO/SiO2. These results indicated that the active site for methanol synthesis was created on the Cu/SiO2 upon reduction of the physical mixture with H2. It was also found that ZnO itself had no promotional effect on the methanol synthesis activity except for the role of ZnO to create the active site. The active site created on the Cu/SiO2 catalyst was found not to promote the formation of formate from CO2 and H2 on the Cu surface based on in situ FT-IR measurements. A special formate species unstable at 523 K with an OCO asymmetric peak at ~1585 cm-1 was considered to be adsorbed on the active site. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
This note rectifies serious omissions from the references included in a recent paper by Fujitani et al. concerned with methanol synthesis over Cu/SiO2 containing ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
研究了不同Cu/Zn摩尔比对CO2加氢合成甲醇催化性能的影响。采用草酸凝胶共沉淀法制备了一系列不同Cu/Zn摩尔比的Cu O/Zn O/Zr O2催化剂,考察不同温度及Cu/Zn摩尔比对催化性能的影响,并结合X射线衍射(XRD)、N2物理吸附、程序升温还原(H2-TPR)和程序升温脱附(H2/CO2-TPD)技术对催化剂的结构和性质进行表征。结果表明:适宜的Cu/Zn摩尔比可以提高催化剂的反应性能。在513 K,2.0 MPa,n(H2)/n(CO2)=3/1和GHSV=4 800 h-1反应条件下,当R(Cu/Zn)=4时,Cu O/Zn O/Zr O2催化剂反应性能最好,CO2转化率高达17.8%,甲醇选择性高达67.8%。  相似文献   

8.
Cu/ZnO-based catalysts have been extensively and intensively studied for CO2 hydrogenation to methanol due to their relatively superior catalytic performance. However, the mediocre methanol selectivity over Cu/ZnO-based catalysts has not been disclosed mainly because the predominant by-product CO formation activity fails to arouse any attention, significantly deterring the further catalyst optimization. The ZnOx-Cu nanoparticles (NP)-ZnO interface, derived from strong metal-support interactions (SMSI), has been recognized to be more active for methanol formation compared with the classical direct contact Cu-ZnO interface. In order to disclose the origin of the mediocre methanol selectivity, these two types of Cu-ZnO interfaces have been designed and constructed through carefully manipulating the synthesis and heat pre-treatment conditions of the powder model catalysts. Then, methanol and CO formation behaviors over these two interfaces have been explored thoroughly in actual reaction conditions. Finally, the origin of the mediocre methanol selectivity over Cu/ZnO-based catalysts has been proposed. This work provides unique insights for designing efficient Cu/ZnO-based catalysts with high methanol selectivity and yield and puts forward an effective strategy to investigate the catalytic behaviors over different interfaces in actual reaction conditions.  相似文献   

9.
The effect of suspension ageing time during the catalyst precipitation process on the performance of co-precipitated Cu/ZnO/ZrO2 catalysts in methanol synthesis from CO2 and H2 has been studied. The ageing time influenced greatly the physical and chemical characteristics of the catalysts as well as their activity in the methanol synthesis. Prolonged ageing was advantageous, mainly due to both lower sodium contents and enhanced crystallinity of the catalysts.  相似文献   

10.
The effect of Zn in copper catalysts on the activities for both CO2 and CO hydrogenations has been examined using a physical mixture of Cu/SiO2+ZnO/SiO2 and a Zn-containing Cu/SiO2 catalyst or (Zn)Cu/SiO2. Reduction of the physical mixture with H2 at 573–723 K results in an increase in the yield of methanol produced by the CO2 hydrogenation, while no such a promotion was observed for the CO hydrogenation, indicating that the active site is different for the CO2 and CO hydrogenations. However, the methanol yield by CO hydrogenation is significantly increased by the oxidation treatment of the (Zn)Cu/SiO2 catalyst. Thus it is concluded that the Cu–Zn site is active for the CO2 hydrogenation as previously reported, while the Cu–O–Zn site is active for the CO hydrogenation.  相似文献   

11.
Methanol synthesis from CO/H2 and CO2/H2 was carried out at atmospheric pressure over Cu/ZnO/Al2O3 catalyst. The formation and variation of surface species were recorded by in situ FT-IR spectroscopy. The result revealed that both CO and CO2 can serve as the primary carbon source for methanol synthesis. For CO/H2 feed gas, only HCOO-Zn was detected; however, for CO2/H2, both HCOO-Zn and HCOO-Cu were observed, and without CH3O-Cu. HCOO-Zn was the key intermediate. A scheme of methanol synthesis and reverse water-gas shift (RGWS) reaction was proposed.  相似文献   

12.
The residual sodium in the Cu/ZnO/ZrO2 catalyst is found to inhibit the interaction between CuO and ZnO and lead to a decrease in the catalytic activity for CO hydrogenation. Therefore, it is required to reduce the content of sodium as much as possible during the course of catalyst preparation. To obtain 10% yield of methanol, the sodium content must be reduced to a level lower than 0.15%. For this purpose, the washing condition has been investigated experimentally to optimize the preparation conditions of Cu/ZnO/ZrO2 catalyst. As a result, the sodium content could be reduced to 0.115% by washing the cake four times with 50 mL of distilled water per gram of the cake, which constitutes the optimum condition for washing.  相似文献   

13.
《Journal of Catalysis》2005,229(1):136-143
The structure of Cu/SiO2 and Cu/ZnO/SiO2 catalysts was studied after reduction at 450–1300 K. The influence of the ZnO promoter on the exposed Cu surface area and metal cluster size was determined by N2O chemisorption and X-ray diffraction. After reduction at 450 K, the metal surface area amounted to 9 m2/gcat for both catalysts. Oxygen uptake during N2O chemisorption increased significantly up to reduction temperatures of 800–900 K. This increase was most prominent for the ZnO-promoted catalyst, although no oxygen uptake was observed for a similarly treated ZnO/SiO2 sample. The behaviour of the promoted catalyst can be explained by formation of Zn0, surface alloying, and segregation of ZnOx species on top of Cu clusters. The high thermostability of the catalysts was confirmed by in situ XRD measurements. The Cu crystallite size in both catalysts was about 4 nm, and did not increase when the reduction temperature was raised to 1100 K for 1 h.  相似文献   

14.
We have studied the rate of methanol formation over Cu(100) and Ni/Cu(100) from various mixtures of CO, CO2 and H2. It is found that the presence of submonolayer quantities of Ni leads to a strong increase in the rate of methanol formation from mixtures containing all three components whereas Ni does not influence the rate from mixtures of CO2/H2 and CO/H2, respectively. The influence of the partial pressures of CO and CO2 on the rate indicates that the role of CO is strictly promoting. From temperature-programmed desorption spectra it follows that the surface concentration of Ni depends strongly on the partial pressure of CO. In this way the increase in reactivity is interpreted as a CO-induced structural promotion introduced by the stronger bonding of CO to Ni as compared to Cu. It is suggested that this type of promotional behavior will be of general importance in existent catalysts and perhaps even more relevant in the development of new or improved bimetallic catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The space velocity had profound and complicated effects on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 at 523 K and 3.0MPa. At high space velocities, methanol yields as well as the rate of methanol production increased continuously with increasing CO2 concentration in the feed. Below a certain space velocity, methanol yields and reaction rates showed a maximum at CO2 concentration of 5–10%. Different coverages of surface reaction intermediates on copper appeared to be responsible for this phenomenon. The space velocity that gave the maximal rate of methanol production also depended on the feed composition. Higher space velocity yielded higher rates for CO2/ H2 and the opposite effect was observed for the CO/H2 feed. For CO2/CO/H2 feed, an optimal space velocity existed for obtaining the maximal rate.  相似文献   

16.
《Applied catalysis》1990,57(1):241-251
The effect of silver on carbon monoxide hydrogenation over Rh/SiO2 has been studied. Silver is found to decrease the rates of formation for methane and C2+ hydrocarbons more than those for C2 oxygenates resulting in a marked increase in C2 oxygenate selectivity. Infrared spectroscopic studies reveal that Ag blocks the bridge-CO sites. Ethylene addition studies show that Ag promotes carbon monoxide insertion and suppresses hydrogenation. The results suggest that the number of Rh atoms required for carbon monoxide insertion may be less than that for hydrogenation and methanation.  相似文献   

17.
Copper-based catalysts were widely used in the heterogeneous selective hydrogenation of ethylene car-bonate (EC),a key step in the indirect conversion of CO2 to methanol.However,a high H2/EC molar ratio in feed is required to achieve favorable activity and the methanol selectivity still needs to be improved.Herein,we fabricated a series of Pt-modulated Cu/SiO2 catalysts and investigated their catalytic perfor-mance for hydrogenation of EC in a fixed bed reactor.By modulating the Pt amount,the optimal 0.2Pt-Cu/SiO2 catalyst exhibited the highest catalytic performance with ~99% EC conversion,over 98% selectiv-ity to ethylene glycol and 95.8% selectivity to methanol at the H2/EC ratio as low as 60 in feed.In addition,0.2Pt-Cu/SiO2 catalyst showed excellent stability for 150 h on stream over different H2/EC ratios of 180-40.It is demonstrated a proper amount of Pt could significantly lower the H2/EC molar ratio,promote the reducibility and dispersion of copper,and also enhance surface density of Cu+ species.This could be due to the strong interaction of Cu and Pt induced by formation of alloyed Pt single atoms on the Cu lattice.Meanwhile,a relatively higher amount of Pt would deteriorate the catalytic activity,which could be due to the surface coverage and aggregation of active species.These findings may enlighten some fundamen-tal insights for further design of Cu-based catalysts for the hydrogenation of carbon-oxygen bonds.  相似文献   

18.
The activity of a binary catalyst in alcoholic solvents for methanol synthesis from CO/H2/CO2 at low temperature was investigated in a concurrent synthesis course. Experiment results showed that the combination of homogeneous potassium formate catalyst and solid copper–magnesia catalyst enhanced the conversion of CO2-containing syngas to methanol at temperature of 423–443 K and pressure of 3–5 MPa. Under a contact time of 100 g h/mol, the maximum conversion of total carbon approached the reaction equilibrium and the selectivity of methanol was 99%. A reaction pathway involving esterification and hydrogenolysis of esters was postulated based on the integrative and separate activity tests, along with the structural characterization of the catalysts. Both potassium formate for the esterification as well as Cu/MgO for the hydrogenolysis were found to be crucial to this homogeneous and heterogeneous synergistically catalytic system. CO and H2 were involved in the recycling of potassium formate.  相似文献   

19.
Among various Cu/ZnO/ZrO2 catalysts with the Cu/Zn ratio of 3/7, the one with 15 wt.% of ZrO2 obtains the best activity for methanol synthesis by hydrogenation of CO. The TPR, TPO and XPS analyses reveal that a new copper oxide phase is formed in the calcined Cu/ZnO/ZrO2 catalysts by the dissolution of zirconium ions in copper oxide. In addition, the Cu/ZnO/ZrO2 catalyst with 15 wt.% of ZrO2 turns out to contain the largest amount of the new copper oxide phase. When the Cu/ZnO/ZrO2 catalysts is reduced, the Cu2+ species present in the ZrO2 lattice is transformed to Cu+ species. This leads to the speculation that the addition of ZrO2 to Cu/ZnO catalysts gives rise to the formation of Cu+ species, which is related to the methanol synthesis activity of Cu/ZnO/ZrO2 catalyst in addition to Cu metal particles. Consequently, the ratio of Cu+/Cu0 is an important factor for the specific activity of Cu/ZnO/ZrO2 catalyst for methanol synthesis.  相似文献   

20.
A. Gotti  R. Prins 《Catalysis Letters》1996,37(3-4):143-151
Catalysts were prepared from ultra pure SiO2, Pd and Rh nitrates and chlorides, and by doping with Al, Fe, Na, K or Ca nitrate. The activities and selectivities of the Pd and Rh catalysts were investigated at 553 K, H2/CO=2 or 3 and 2.5 or 4 MPa respectively. Additives had a strong influence on the catalytic properties. The doping with alkali and alkaline earth oxides led to a strong suppression of the CO dissociation. Particularly basic additives, such as Ca, had a strong promoting effect on the methanol production. This may confirm that the formation of methanol occurs through formate intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号