首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystem models are routinely used to estimate net primary production (NPP) from the stand to global scales. Complex ecosystem models, implemented at small scales (< 10 km2), are impractical at global scales and, therefore, require simplifying logic based on key ecological first principles and model drivers derived from remotely sensed data. There is a need for an improved understanding of the factors that influence the variability of NPP model estimates at different scales so we can improve the accuracy of NPP estimates at the global scale. The objective of this study was to examine the effects of using leaf area index (LAI) and three different aggregated land cover classification products-two factors derived from remotely sensed data and strongly affect NPP estimates-in a light use efficiency (LUE) model to estimate NPP in a heterogeneous temperate forest landscape in northern Wisconsin, USA. Three separate land cover classifications were derived from three different remote sensors with spatial resolutions of 15, 30, and 1000 m. Average modeled net primary production (NPP) ranged from 402 gC m− 2 year− 1 (15 m data) to 431 gC m− 2 year− 1 (1000 m data), for a maximum difference of 7%. Almost 50% of the difference was attributed each to LAI estimates and land cover classifications between the fine and coarse scale NPP estimate. Results from this study suggest that ecosystem models that use biome-level land cover classifications with associated LUE coefficients may be used to model NPP in heterogeneous land cover areas dominated by cover types with similar NPP. However, more research is needed to examine scaling errors in other heterogeneous areas and NPP errors associated with deriving LAI estimates.  相似文献   

2.
Release of an annual global terrestrial net primary production (NPP) data layer has begun in association with the Moderate Imaging Spectroradiometer (MODIS) sensor, a component of the NASA Earth Observing System. The task of validating this product will be complicated by the mismatch in scale between ground-based NPP measurements and the coarse resolution (1?km) of the NPP product. In this paper we describe three relevant approaches to scaling NPP from the plot level to the approximately 25-km2 footprint of the sensor, and discuss issues associated with operational comparisons to the MODIS NPP product. All approaches revealed considerable spatial heterogeneity in NPP at scales less than the resolution of the MODIS NPP product. The effort to characterize uncertainty in the validation data layers indicated the importance of treating the combination of classification error, sampling error, and measurement error. Generally, the optimal procedure for scaling NPP to a MODIS footprint will depend on local vegetation type, the scale of spatial heterogeneity, and available resources. In all approaches, high resolution remote sensing can play a critical role in characterizing land cover and relevant biophysical variables.  相似文献   

3.
Element size transitioning in the construction of spatial meshes for finite element models is often controlled by biasing the concentration of nodes, towards one end or the other, along each of a set of curves in the model. A simple, common and efficient scheme to implement such nodal concentration biasing along a given curve is to require that the nodal spacings δi be (sequence) terms biδ0 of a geometric series. Current practice takes the parameter value b, or its equivalent, as an independent input, so that the initial nodal spacing δ0 must be a computed output. This is the most straightforward approach, but the lack of direct control over the value δ0 is a significant shortcoming. In an element size transitioning scenario, δ0 is often a parameter for which the model builder/analyst has independent quantitative information. It may represent the a priori known thickness of a thin bond or weld, for example. A more rational choice for these cases, proposed by this paper, is a scheme for which δ0 is an independent input parameter instead of b. The parameter b is computed by a convergence-guaranteed algorithm for which the existence of b as a single-valued function of its input is proven.  相似文献   

4.
MODIS primary production products (MOD17) are the first regular, near-real-time data sets for repeated monitoring of vegetation primary production on vegetated land at 1-km resolution at an 8-day interval. But both the inconsistent spatial resolution between the gridded meteorological data and MODIS pixels, and the cloud-contaminated MODIS FPAR/LAI (MOD15A2) retrievals can introduce considerable errors to Collection4 primary production (denoted as C4 MOD17) results. Here, we aim to rectify these problems through reprocessing key inputs to MODIS primary vegetation productivity algorithm, resulting in improved Collection5 MOD17 (here denoted as C5 MOD17) estimates. This was accomplished by spatial interpolation of the coarse resolution meteorological data input and with temporal filling of cloud-contaminated MOD15A2 data. Furthermore, we modified the Biome Parameter Look-Up Table (BPLUT) based on recent synthesized NPP data and some observed GPP derived from some flux tower measurements to keep up with the improvements in upstream inputs. Because MOD17 is one of the down-stream MODIS land products, the performance of the algorithm can be largely influenced by the uncertainties from upstream inputs, such as land cover, FPAR/LAI, the meteorological data, and algorithm itself. MODIS GPP fits well with GPP derived from 12 flux towers over North America. Globally, the 3-year MOD17 NPP is comparable to the Ecosystem Model-Data Intercomparison (EMDI) NPP data set, and global total MODIS GPP and NPP are inversely related to the observed atmospheric CO2 growth rates, and MEI index, indicating MOD17 are reliable products. From 2001 to 2003, mean global total GPP and NPP estimated by MODIS are 109.29 Pg C/year and 56.02 Pg C/year, respectively. Based on this research, the improved global MODIS primary production data set is now ready for monitoring ecological conditions, natural resources and environmental changes.  相似文献   

5.
A modified light use efficiency (LUE) model was tested in the grasslands of central Kazakhstan in terms of its ability to characterize spatial patterns and interannual dynamics of net primary production (NPP) at a regional scale. In this model, the LUE of the grassland biome (?n) was simulated from ground-based NPP measurements, absorbed photosynthetically active radiation (APAR) and meteorological observations using a new empirical approach. Using coarse-resolution satellite data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly NPP was calculated from 1998 to 2008 over a large grassland region in Kazakhstan. The modelling results were verified against scaled up plot-level observations of grassland biomass and another available NPP data set derived from a field study in a similar grassland biome. The results indicated the reliability of productivity estimates produced by the model for regional monitoring of grassland NPP. The method for simulation of ?n suggested in this study can be used in grassland regions where no carbon flux measurements are accessible.  相似文献   

6.
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.  相似文献   

7.
Let X1,…, Xr+1 be independent random variables, XiGa (ai, θ, δi), i = 1,…, r + 1. Define and Vi = Xi/Xr+1, i = 1,…, r. Then, (U1,…, Ur) and (V1,…, Vr) follow noncentral Dirichlet Type 1 and Type 2 distributions, respectively. In this article several properties of these distributions and their connections with the uniform, the noncentral multivariate-F and the noncentral multivariate-t distributions are discussed.  相似文献   

8.
By using a land cover map, normalized difference vegetation index (NDVI) data sets, monthly meteorological data and observed net primary productivity (NPP) data, we have improved the method of estimating light use efficiency (LUE) for different biomes and soil moisture coefficients in the Carnegie–Ames–Stanford Approach (CASA) ecosystem model. Based on this improved model we produced an annual NPP map (in 1999) for the East Asia region located at 10–70° N, 70–170° E (about 19.66% of the terrestrial surface of the Earth). The results show that the mean NPP for the study area in 1999 was 374.12 g carbon (C) m?2 year?1 and the total NPP was 1.096 × 1014 kg C year?1, making up 17.51–18.39% of the global NPP. Comparison between the estimated NPP obtained from this improved CASA ecosystem model and the observed NPP obtained from two NPP databases indicates that the estimated NPP is close to the observed NPP, with an average error of 5.15% for the study region. We used two different land cover maps of China to drive the improved CASA model by keeping other inputs unchanged to determine how the classification accuracy of the land cover map affects the estimated NPP, and the results indicate that an accurate land cover map is important for obtaining an accurate and reliable estimate of NPP for some regions, especially for a particular biome.  相似文献   

9.
The Closest Substring problem (the CSP problem) is a basic NP-hard problem in the study of computational biology. It is known that the problem has polynomial time approximation schemes. In this paper, we prove that unless the Exponential Time Hypothesis fails, the CSP problem has no polynomial time approximation schemes of running time f(1/ε)no(1/ε) for any function f. This essentially excludes the possibility that the CSP problem has a practical polynomial time approximation scheme even for moderate values of the error bound ε. As a consequence, it is unlikely that the study of approximation schemes for the CSP problem in the literature would lead to practical approximation algorithms for the problem for small error bound ε.  相似文献   

10.
Gasochromic palladium doped peroxopolytungstic acid (Pd:P-PTA) films have been prepared using dip-coating deposition from peroxopolytungstic acid (P-PTA) sols into which PdCl2 was added in molar ratios Pd:W=1:125, 1:100, 1:53, and 1:40. These films exhibit reversible colouring/bleaching changes when exposed to hydrogen or hydrogen/argon mixture (4%) and air, alternatively. Gasochromically coloured and bleached films were characterised using in-situ Fourier transform infrared (FT-IR) spectroscopy. The vibrational modes of as-deposited, coloured and bleached films were assigned and the polaron absorption, which characterises the IR spectra of coloured films, was detected. Colouring/bleaching kinetics of films exposed to H2 and H2/Ar mixture as a function of the concentration of the catalyst and temperature of heat-treatment is reported. Proton (σpr) and electronic (σel) conductivities determined from impedance spectra revealed an increase in σel from 10−5 S cm−1 in bleached state, to 10−3 S cm−1 in coloured state, while σpr remained constant (10−2 S cm−1).  相似文献   

11.
With increased availability of satellite data products used in mapping surface energy balance and evapotranspiration (ET), routine ET monitoring at large scales is becoming more feasible. Daily satellite coverage is available, but an essential model input, surface temperature, is at 1 km or greater pixel resolution. At such coarse spatial resolutions, the capability to monitor the impact of land cover change and disturbances on ET or to evaluate ET from different crop covers is severely hampered. The effect of sensor resolution on model output for an agricultural region in central Iowa is examined using Landsat data collected during the Soil Moisture Atmosphere Coupling Experiment (SMACEX). This study was conducted in concert with the Soil Moisture Experiment 2002 (SMEX02). Two images collected during a rapid growth period in soybean and corn crops are used with a two-source (soil+vegetation) energy balance model, which explicitly evaluates soil and vegetation contributions to the radiative temperature and to the net turbulent exchange/surface energy balance. The pixel resolution of the remote sensing inputs are varied from 60 m to 120, 240, and 960 m. Model output at high resolution are first validated with tower and aircraft-based flux measurements to assure reliability of model computations. Histograms of the flux distributions and resulting statistics at the different pixel resolutions are compared and contrasted. Results indicate that when the input resolution is on the order of 1000 m, variation in fluxes, particularly ET, between corn and soybean fields is not feasible. However, results also suggest that thermal sharpening techniques for estimating surface temperature at higher resolutions (∼250 m) using the visible/near infrared waveband resolutions could provide enough spatial detail for discriminating ET from individual corn and soybean fields. Additional support for this nominal resolution requirement is deduced from a geostatistical analysis of the vegetation index and surface temperature images.  相似文献   

12.
Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities impacted by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained ~ 1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75° off-nadir, and at spatial resolutions ranging from 3 m to 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a land cover type-specific a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.  相似文献   

13.
Crop yield is a key element in rural development and an indicator of national food security. A method that could estimate crop yield over large hilly areas would be highly desirable. Methods including high spatial resolution satellite imagery have the potential to achieve this objective. This paper describes a method of integrating QuickBird imagery with a production efficiency model (PEM) to estimate crop yield in Zhonglianchuan, a hilly area on Loess Plateau, China. In the PEM model, crop yield is a function of the photosynthetic active radiation (PAR), fraction of absorbed photosynthetically active radiation (fAPAR) and light-use efficiency (LUE). Based on the high spatial resolution QuickBird imagery, a land cover classification is used to attribute a class-specific LUE. The fAPAR is related to spectral vegetation indices (SVI), which can be derived from the satellite images. The LUE, fAPAR and incident PAR data were combined to estimate the crop yield. Farmer-reported crop yield data in 80 representative plots were used to validate the model output. The results indicated QuickBird imagery can improve the accuracy of predicted results relative to the Landsat TM image. The predicted yield approximated well with the data reported by the farmers (r2 = 0.86; n = 80). The spatial distributions of crop yield derived here also offers valuable information to manage agricultural production and understand ecosystem functioning.  相似文献   

14.
Remote sensing models based on light use efficiency (LUE) provide promising tools for monitoring spatial and temporal variation of gross primary production (GPP) at regional scale. In most of current LUE-based models, maximal LUE (εmax) heavily relies on land cover types and is considered as a constant, rather than a variable for a certain vegetation type or even entire eco-region. However, species composition and plant functional types are often highly heterogeneous in a given land cover class; therefore, spatial heterogeneity of εmax must be fully considered in GPP modeling, so that a single cover type does not equate to a single εmax value. A spatial dataset of εmax accurately represents the spatial heterogeneity of maximal light use would be of significant beneficial to regional GPP models. Here, we developed a spatial dataset of εmax by integrating eddy covariance flux measurements from 14 field sites in a network of coordinated observation across northern China and satellite derived indices such as enhanced vegetation index (EVI) and visible albedo to simulate regional distribution of GPP. This dynamic modeling method recognizes the spatial heterogeneity of εmax and reduces the uncertainties in mixed pixels. Further, we simulated GPP with the spatial dataset of εmax generated above. Both εmax and growing season GPP show complex patterns over northern China that reflect influences of humidity, green vegetation fractions, and land use intensity. “Green spots” such as oasis meadow and alpine forests in dryland and “brown spots” such as build-up and heavily degraded vegetation in the east are clearly captured by the simulation. The correlation between simulated GPP and EC measured GPP indicate that the simulated GPP from this new approach is well matched with flux-measured GPP. Those results have demonstrated the importance of considering εmax as both a spatially and temporally variable values in GPP modeling.  相似文献   

15.
Two of the most widely used land‐cover data sets for the United States are the National Land‐Cover Data (NLCD) at 30‐m resolution and the Global Land‐Cover Characteristics (GLCC) at 1‐km nominal resolution. Both data sets were produced around 1992 and expected to provide similar land‐cover information. This study investigated the spatial distribution of NLCD within major GLCC classes at 1‐km unit over a total of 11 agricultural‐related eco‐regions across the continental United States. Our results exhibited that data agreement or relationship between the GLCC and NLCD was higher for the eco‐regions located in the corn belt plains with homogeneous or less complicated land‐cover distributions. The GLCC cropland primarily corresponded to NLCD row crops, pasture/hay and small grains, and was occasionally related to NLCD forest, grassland and shrubland in the remaining eco‐regions due to high land‐cover diversity. The unique GLCC classes of woody savanna and savanna were mainly related to the NLCD orchard and grassland, respectively, in the eco‐region located in the Central Valley of California. The GLCC urban/built‐up among vegetated areas strongly agreed to the NLCD urban for the eco‐regions in the corn belt plains. A set of sub‐class land‐cover information provided through this study is valuable to understand the degrees of spatial similarity for the major global vegetated classes. The sub‐class information from this study provides reference for substituting less‐detailed global data sets for detailed NLCD to support national environment studies.  相似文献   

16.
芦苇湿地植被NPP估算方法探索与应用   总被引:1,自引:0,他引:1  
作为表征湿地生态系统健康的重要指标,湿地植被净初级生产力(NPP)的精准估算对于理解全球变化以及区域碳循环具有重要的支撑作用。基于Landsat 8 OLI遥感影像和大量实测数据,以光能利用率模型基本结构式为基础,构建和评价了芦苇湿地植被NPP估算的不同遥感驱动模型,并以东北3个典型芦苇湿地保护区为例进行了验证与应用。结果表明:以NPP = ff(VI1)) × f(VI2) 结构与NDVI和MSAVI两个植被指数作为自变量的模型最优,模型精度为89.2%,明显高于NPP低空间分辨率产品和CASA模型的模拟结果。根据该模型估算的东北地区七星河、查干湖和双台河口芦苇湿地的NPP均值分别为3 001、3 050和3 621 gC·m–2·a–1。受水文条件和人类活动影响,各湿地样区间NPP具有典型的空间分布异质性。实验提出的框架模型可为小尺度上湿地生态系统健康评估或湿地生态系统恢复效果评价等指标获取提供方法借鉴。  相似文献   

17.
高时空分辨率数据对实现植被生产力动态监测和生态环境评估具有重要意义.以雄安新区为研究区,基于改进的ESTARFM融合模型构建高时空分辨率NDVI数据集,结合改进的CASA模型,模拟和分析了 2000~2018年区域植被NPP的时空变化特征,并探讨气温与降水对NPP的影响.结果表明:①改进的ESTARFM融合模型预测结果...  相似文献   

18.
In this paper, we study the existence of three positive solutions for the second-order two-point boundary value problem on a measure chain,
where f:[t1,σ(t2)]×[0,R→[0,) is continuous and p:[t1,σ(t2)]→[0,) a nonnegative function that is allowed to vanish on some subintervals of [t1,σ(t2)] of the measure chain. The method involves applications of a new fixed-point theorem due to Bai and Ge [Z.B. Bai, W.G. Ge, Existence of three positive solutions for some second order boundary-value problems, Comput. Math. Appl. 48 (2004) 699–707]. The emphasis is put on the nonlinear term f involved with the first order delta derivative xΔ(t).  相似文献   

19.
Four 1 km global land cover products are currently available to the scientific community: the University of Maryland (UMD) global land cover product, the International Geosphere–Biosphere Programme Data and Information System Cover (IGBP‐DISCover), the MODerate resolution Imaging Spectrometer (MODIS) global land cover product and Global Land Cover 2000 (GLC2000). Because of differences in data sources, temporal scales, classification systems and methodologies, it is important to compare and validate these global maps before using them for a variety of studies at regional to global scales. This study aimed to perform the validation and comparison of the four global land cover datasets, and to examine the suitability and accuracy of different coarse spatial resolution datasets in mapping and monitoring cropland across China. To meet this objective, we compared the four global land cover products with the National Land Cover Dataset 2000 (NLCD‐2000) at three scales to evaluate the accuracy of estimates of aggregated cropland areas in China. This was followed by a spatial comparison to assess the accuracies of the four products in estimating the spatial distribution of cropland across China. A comparative analysis showed that there are varying levels of apparent discrepancies in estimating the cropland of China between these four global land cover datasets, and that both area totals and spatial (dis)agreement between them vary from region to region. Among these, the MODIS dataset has the best fit in depicting China's croplands. The coarse spatial resolution and the per pixel classification approach, as well as landscape heterogeneity, are the main reasons for the large discrepancies between the global land cover datasets tested and the reference data.  相似文献   

20.
A primary objective of the Earth Observing System (EOS) is to develop and validate algorithms to estimate leaf area index (L), fraction of absorbed photosynthetically active radiation (fAPAR), and net primary production (NPP) from remotely sensed products. These three products are important because they relate to or are components of the metabolism of the biosphere and can be determined for terrestrial ecosystems from satellite-borne sensors. The importance of these products in the EOS program necessitates the need to use standard methods to obtain accurate ground truth estimates of L, fAPAR, and NPP that are correlated to satellite-derived estimates. The objective of this article is to review direct and indirect methods used to estimate L, fAPAR, and NPP in terrestrial ecosystems. Direct estimates of L, biomass, and NPP can be obtained by harvesting individual plants, developing allometric equations, and applying these equations to all individuals in the stand. Using non-site-specific allometric equations to estimate L and foliage production can cause large errors because carbon allocation to foliage is influenced by numerous environmental and ecological factors. All of the optical instruments that indirectly estimate L actually estimate “effective” leaf area index (LE) and underestimate L when foliage in the canopy is nonrandomly distributed (i.e., clumped). We discuss several methods, ranging from simple to complex in terms of data needs, that can be used to correct estimates of L when foliage is clumped. Direct estimates of above-ground and below-ground net primary production (NPPA and NPPB, respectively) are laborious, expensive and can only be carried out for small plots, yet there is a great need to obtain global estimates of NPP. Process models, driven by remotely sensed input parameters, are useful tools to examine the influence of global change on the metabolism of terrestrial ecosystems, but an incomplete understanding of carbon allocation continues to hamper development of more accurate NPP models. We summarize carbon allocation patterns for major terrestrial biomes and discuss emerging allocation patterns that can be incorporated into global NPP models. One common process model, light use efficiency or epsilon model, uses remotely sensed fAPAR, light use efficiency (LUE) and carbon allocation coefficients, and other meteorological data to estimates NPP. Such models require reliable estimates of LUE. We summarize the literature and provide LUE coefficients for the major biomes, being careful to correct for inconsistencies in radiation, dry matter and carbon allocation units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号