首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Trimeric betaine surfactants tri[(N‐alkyl‐N‐ethyl‐N‐sodium carboxymethyl)‐2‐ammonium bromide ethylene] amines were prepared with raw materials containing tris(2‐aminoethyl) amine, alkyloyl chloride, lithium aluminium hydride, sodium chloroacetate, and bromoethane by alkylation, Hoffman degradation reaction, carboxymethylation and quaternary amination reaction. The chemical structures of the prepared compounds were confirmed by FTIR, 1H NMR, MS and elemental analysis. With the increasing length of the carbon chain, the values of their critical micelle concentration initially decreased. Surface active properties of these compounds were superior to general carboxylate surfactants C10H21CHN+(CH3)2COONa. The minimum cross‐sectional area per surfactant molecule (Amin), standard Gibbs free energy adsorption (ΔGads) and standard Gibbs free energy micellization (ΔGmic) are notably influenced by the chain length n, and the trimeric betaine surfactants have greater ability to adsorb at the air/water interface than form micelles in solution. The efficiency of adsorption at the water/air interface (pC20) of these surfactants increased with the increasing length of the alkyl chain. Their foaming properties, wetting ability of a felt chip, and lime‐soap dispersing ability were also investigated.  相似文献   

2.
Sodium 4,6-(2-(N,N-bis-ethylhexylamino)-1,3,5-triazine-4,6-yl-amino) ethane sulfonate (IXC8), Sodium 4,6-(2-(N,N-bis-octylamino)-1,3,5-Triazine-4,6-yl-amino) ethane sulfonate (XC8) and 2,2′-(6,6′-(ethane-1,2-diylbis(azanediyl) bis(4-(octylamino)-1,3,5-triazine-6,2-diyl)) bis(azanediyl))diethane sulfonate (C8-2-C8) were synthesized from cyanuric chloride. The surface activity and application properties of these surfactants (XC8, IXC8 and C8-2-C8) were discussed. The values of CMC, γ CMC, pC20, Γmax, and Amin calculated from surface tension measurement at 30 °C indicate that the surface activity of IXC8, which has two branched hydrophobic carbon chains, has lower γ CMC (26.8 mN m?1) than the other investigated surfactants and excellent wetting ability.  相似文献   

3.
Three cationic surfactants containing amide groups were prepared by quaternization of dimethylaminopropylamine with benzyl chloride. FTIR and 1H-NMR spectroscopy were used to confirm the chemical structure of the prepared cationic surfactants. The surface parameters were estimated using surface tension measurements at three different temperatures. The prepared cationic surfactant showed a lower CMC than conventional cationic surfactants. Thermodynamic parameters of adsorption and micellization depend mainly of alkyl chain length and temperature. The adsorption process is more favorable than micellization. The biological activity of the three surfactants was estimated using inhibition zone showing that amidoamine cationic surfactants have good activity and the surfactants C12Bn is the most effective one.  相似文献   

4.
New quaternary ammonium salts are synthesized by octylamine, nonylamine, dodecylamine, and hexadecylamine reacting with propylene oxide at a mole ratio of 1:2, followed by reaction with 2‐chloroethanol. By tensiometric measurements of aqueous solutions, their surface activity has been determined. Using the results of these measurements and electroconductometric studies, important parameters such as critical micelle concentration (CMC), efficiency of surfactant adsorption, surface pressure at the CMC, changes of Gibbs free energies for micelle formation, and adsorption were estimated. By application of the Gibbs adsorption isotherm, indices such as maximum surface excess concentration and minimum surface area/molecule at the air–water interface were also calculated. Petroleum‐collecting properties of these surfactants were investigated. Among these quaternary ammonium surfactants, the surfactant based on dodecylamine, propylene oxide, and 2‐chloroethanol exhibits the highest petroleum‐collecting capacity.  相似文献   

5.
Mixtures of trisiloxane type nonionic silicone surfactant (SS) with sodium dodecylsulfate, tetradecyltrimethylammonium bromide or tert-octylphenol ethoxylated with 9.5 ethylene oxide groups were studied in water at 30 °C by dilute aqueous solution phase diagrams, surface tension and dilute solution viscosity methods. The cloud points for the silicone surfactant aqueous solutions increased upon addition of hydrocarbon surfactants indicating the formation of hydrophilic complexes in mixture solutions. The scrutiny of the surface tension isotherms plotted as a function of SS concentration revealed that competitive adsorption effects are the characteristic features in these mixtures depending upon the SS concentration. Otherwise the isotherms exhibited two break points and the difference of concentration between the two break points increased with the increase in SS concentration indicating the cooperative nature of interactions. The micellar mole fractions of individual surfactants were determined by Rublingh's regular solution theory; interaction parameters and activity coefficients were evaluated and interpreted in terms of synergistic type interactions in these mixtures. The surface active parameters in mixture solutions were estimated and their analysis shows that the molecular species in the mixture solutions have a preferential tendency for adsorption at the air/water interface than in association form in the bulk solution. The effect of hydrocarbon surfactants on the intrinsic viscosity of SS micelles was monitored and related to the enhanced hydration in mixed micelles.  相似文献   

6.
The present paper describes the synthesis and evaluation of surface properties of a novel series of anionic surfactant, namely sodium 3‐(3‐alkyloxy‐3‐oxopropoxy)‐3‐oxopropane‐1‐sulfonate with varying alkyl chain length (C8–C16). Synthesis involves initial formation of the 3‐alkyloxy‐3‐oxopropyl acrylate along with fatty acrylate during the direct esterification of fatty alcohol with acrylic acid in the presence of 0.5 % NaHSO4 at 110 °C followed by sulfonation of the terminal double bond of the 3‐alkyloxy‐3‐oxopropyl acrylate. Synthesized compounds were evaluated for surface and thermodynamic properties such as critical micelle concentration (CMC), surface tension at CMC (γcmc), efficiency of surface adsorption (pC20), surface excess (Γmax), minimum area per molecule at the air–water interface (Amin), free energy of adsorption (?G°ads), free energy of micellization (?G°mic), wetting time, emulsifying properties, foaming power and calcium tolerance. Effect of chain length on CMC follows the classic trend, i.e. decrease in CMC with the increase in alkyl chain length. High pC20 (>3) value indicates higher hydrophobic character of the surfactant. These surfactants showed very poor wetting time and calcium tolerance, but exhibited good emulsion stability and excellent foamability. Foaming power and foam stability of C14‐sulfonate were found to be the best among the studied compounds. Foam stability of C14‐sulfonate was also studied at different concentrations over time and excellent foam stability was obtained at a concentration of 0.075 %. Thus this novel class of surfactant may find applications as foam boosters in combination with other suitable surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号