首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to enhance the uniformity of the radial solids distribution and thereby the performance of industrial circulating fluidized‐bed (CFB) risers, an approach by using the air jet from the riser circumference is proposed. The Eulerian‐Eulerian computational fluid dynamics (CFD) model with the kinetic theory of granular flow is adopted to simulate the gas‐solids two‐phase flow in a CFB riser with fluid catalytic cracking (FCC) particles. The numerical results indicate that by employing the circumferential air jet approach under appropriate jet velocities, the maximum solids concentration in the near‐wall region can be greatly reduced, the entrance region can be shortened, and the uniformity of the flow structure can be significantly improved.  相似文献   

2.
Our recently presented multi‐scale computational fluid dynamics (CFD) approach has proven to be able to capture the choking phenomena in a circulating fluidized bed (CFB). However, how to transfer this capability to assist industrial operation remains to be explored. To this end, this paper presents further simulation results over the intrinsic flow regime diagram and the operating diagram for gas–solid risers, showing the variation of flow regimes with gas velocity and solids flux as well as riser height. It is confirmed that the choking in CFB risers, characterized by the saturation carrying capacity and the coexistence of both dense and dilute flows, holds clear‐cut definition in hydrodynamics. In physics, both the choking, non‐choking transitions, and the critical point in‐between are intrinsic nature of gas–solid riser flows; they initiate as functions of gas velocity and solids flux. In engineering operation, however, their appearances vary with the riser height used. As a result, the intrinsic flow regime diagram can be defined by the combination of gas velocity and solids flux, although it is hard to obtain in practice owing to the limitation of riser height. The operating diagram of a CFB should be, accordingly, height‐dependent in practice, demanding the riser height as a parameter besides commonly believed gas velocity and solids flux.  相似文献   

3.
The flow distribution through a plate‐fin heat exchanger is studied by using a computational fluid dynamics (CFD) code, FLUENT. The flow distribution through any heat exchanger affects its performance. In designing a heat exchanger, it is assumed that the fluid is uniformly distributed through the heat exchanger core. In practice, however, it is impossible to distribute fluid uniformly, because of an improper inlet configuration, imperfect design, and a complex heat transfer process. The CFD simulation of the flow distribution in the header of a conventional plate‐fin heat exchanger is presented. It is found that the flow maldistribution is very serious in the y‐direction of the header. A modified header is proposed and simulated using CFD. The modified header configuration has a more uniform flow distribution than the conventional header configuration. Hence, the efficiency of the modified heat exchanger is seen to be higher than that of the conventional heat exchanger.  相似文献   

4.
This article is to test the EMMS-based multiscale mass transfer model through computational fluid dynamics (CFD) simulation of ozone decomposition in a circulating fluidized bed (CFB) reactor. Three modeling approaches, namely types A, B and C, are classified according to their drag coefficient closure and mass transfer equations. Simulation results show that the routine approach (type C) with assumption of homogeneous flow and concentration overestimates the ozone conversion rate, introduction of structure-dependent drag force will improve the model prediction (type B), while the best fit to experimental data is obtained by the multiscale mass transfer approach (type A), which takes into account the sub-grid heterogeneity of both flow and concentration. In general, multiscale behavior of mass transfer is more distinct especially for the dense riser flow. The fair agreement between our new model with literature data suggests a fresh paradigm for the CFB related reaction simulation.  相似文献   

5.
In order to study the system hydrodynamics in a circulating fluidized bed (CFB), a 3D full‐loop simulation was conducted for a pilot‐scale CFB. The Eulerian‐Eulerian two‐fluid model with the kinetic theory of granular theory helped to simulate the gas‐solids flow in the CFB. The system hydrodynamics including pressure balance, vectors of gas and solids, distribution of solids holdup, and instantaneous circulating rates were obtained to get a comprehensive understanding of the system. It was predicted that the main driving force was the pressure drop of the storage tank. The storage height and valve opening were critical operating factors to control the riser operation. The effects of operating conditions including solids circulating rates and superficial gas velocity on the hydrodynamics were investigated to provide guidance for the stable operation of the CFB system.  相似文献   

6.
A multiphase computational fluid dynamics (CFD) simulation methodology is developed and proposed for the estimation of the spatial distribution of kLa values in a bench‐scale reactor equipped with a self‐inducing impeller. The importance of estimating an apparent drag coefficient, which considers the effect of turbulence on the gas bubble rising velocity, is also tackled by applying different correlations available in literature, namely, Brucato, modified Brucato, and Pinelli correlations. The spatial distribution of kLa values in the agitated vessel is found from the CFD results using Danckwert's surface renewal model. An analysis of the gas volume fraction distribution obtained from the simulations is performed in order to choose the most suitable drag model. The modified Brucato correction correlation for the drag force exhibits the best agreement with experimental data.  相似文献   

7.
Three‐dimensional (3‐D) simulations of an internal airlift loop reactor in a cylindrical reference frame are presented, which are based on a two‐fluid model with a revised k‐? turbulence model for two‐phase bubbly flow. A steady state formulation is used with the purpose of time saving for cases with superficial gas velocity values as high as 0.12 m/s. Special 3‐D treatment of the boundary conditions at the axis is undertaken to allow asymmetric gas‐liquid flow. The simulation results are compared to the experimental data on average gas holdup, average liquid velocity in the riser and the downcomer, and good agreement is observed. The turbulent dispersion in the present two‐fluid model has a strong effect on the gas holdup distribution and wall‐peaking behavior is predicted. The CFD code developed has the potential to be applied as a tool for scaling up loop reactors.  相似文献   

8.
A reduction approach for coupling complex kinetics with engine computational fluid dynamics (CFD) code has been developed. An on‐the‐fly reduction scheme was used to reduce the reaction mechanism dynamically during the reactive flow calculation in order to couple comprehensive chemistry with flow simulations in each computational cell. KIVA‐3V code is used as the CFD framework and CHEMKIN is employed to formulate chemistry, hydrodynamics and transport. Mechanism reduction was achieved by applying element flux analysis on‐the‐fly in the context of the multidimensional CFD calculation. The results show that incorporating the on‐the‐fly reduction approach in CFD code enables the simulation of ignition and combustion process accurately compared with detailed simulations. Both species and time‐dependant information can be provided by the current model with significantly reduced CPU time. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

9.
提升管内气固流动行为的数值模拟   总被引:3,自引:0,他引:3  
应用计算流体力学软件Fluent,对空气为连续相、固相为催化裂化反应催化剂的循环流化床提升管内的气固流动行为进行模拟。采用用户自定义函数引入颗粒与壁面的恢复系数和颗粒的镜面反射系数,对颗粒在边壁处的部分滑移运动进行描述。采用不同的计算动力学模型及参数,数值模拟了径向颗粒浓度、轴向床层压降的空间分布,以及用以描述颗粒脉动动能的颗粒温度与固含率的关系,并与文献报道的实验和数值模拟结果进行对比分析。结果表明,选取的颗粒动力学理论模型及参数、颗粒部分滑移边界条件及气固曳力模型,可计算得到合理的颗粒轴向及径向分布,验证了提升管中存在典型的径向环核流动结构和轴向压降分布。进一步分析表明固含率显著影响颗粒温度,当固含率为0.05~0.1,颗粒温度存在转折区。  相似文献   

10.
Comparison of flow development in high density downer and riser reactors is experimentally investigated using fluid catalytic cracking particles with very high solids circulation rate up to 700 kg/m2s for the first time. Results show that both axial and radial flow structures are more uniform in downers compared to riser reactors even at very high density conditions, although the solids distribution becomes less uniform in the high density downer. Solids acceleration is much faster in the downer compared to the riser reactor indicating a shorter length of flow development and residence time, which is beneficial to the chemical reactions requiring short contact time and high product selectivity. Slip velocity in risers and downers is also first compared at high density conditions. The slip velocity in the downer is much smaller than in the riser for the same solids holdup indicating less particle aggregation and better gas‐solids contacting in the downer reactors. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1172–1183, 2015  相似文献   

11.
Computational fluid dynamics—discrete element method (CFD‐DEM) simulations were conducted and compared with magnetic resonance imaging (MRI) measurements (Boyce, Rice, and Ozel et al., Phys Rev Fluids. 2016;1(7):074201) of gas and particle motion in a three‐dimensional cylindrical bubbling fluidized bed. Experimental particles had a kidney‐bean‐like shape, while particles were simulated as being spherical; to account for non‐sphericity, “effective” diameters were introduced to calculate drag and void fraction, such that the void fraction at minimum fluidization (εmf) and the minimum fluidization velocity (Umf) in the simulations matched experimental values. With the use of effective diameters, similar bubbling patterns were seen in experiments and simulations, and the simulation predictions matched measurements of average gas and particle velocity in bubbling and emulsion regions low in the bed. Simulations which did not employ effective diameters were found to produce vastly different bubbling patterns when different drag laws were used. Both MRI results and CFD‐DEM simulations agreed with classic analytical theory for gas flow and bubble motion in bubbling fluidized beds. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2555–2568, 2017  相似文献   

12.
A circulating fluidized bed (CFB) is widely applied in many industries because it has high efficiency. To develop and improve the process, an understanding of the hydrodynamics inside the CFB is very important. Computational fluid dynamics (CFD) represents a powerful tool for helping to understand the phenomena involved in the process. In this study, a CFD model was developed to represent a cold model of the laboratory scale CFB which was designed to study the hydrodynamics of a CFB using commercial CFD software. The Eulerian approach with kinetic theory of granular flow was used for simulating the hydrodynamics inside the system. After proper tuning of relevant parameters, the pressure profile along the equipment from the simulation was well agreed with that from the experiment. The simulation result expresses the hydrodynamic parameters of the slug flow such as solid volume fraction, gas and solid velocities and granular temperature in the riser.  相似文献   

13.
Fluid flow and particle collision intensity in a rotating‐drum bioreactor are investigated by numerical simulation and a conventional stirred‐tank bioreactor is selected for comparison. Fluid flow is simulated by the computational fluid dynamics (CFD) software package FLUENT® whereas particle collision intensity is approached numerically through a hard‐sphere model. The dissipation rate of turbulent kinetic energy and the maximum particle collision intensity in the rotating‐drum bioreactor are about one order of magnitude smaller than those in the stirred‐tank bioreactor. The rotating‐drum bioreactor is likely to have a less severe impact on bioleaching microorganisms, and thus is expected to have great potential in the field of bioleaching processes.  相似文献   

14.
Catalytic cracking reaction and vaporization of gas oil droplets have significant effects on the gas solid mixture hydrodynamic and heat transfer phenomena in a fluid catalytic cracking (FCC) riser reactor. A three-dimensional computational fluid dynamic (CFD) model of the reactor has been developed considering three phase hydrodynamics, cracking reactions, heat and mass transfer as well as evaporation of the feed droplets into a gas solid flow. A hybrid Eulerian-Lagrangian method was applied to numerically simulate the vaporization of gas oil droplets and catalytic reactions in the gas-solid fluidized bed. The distributions of volume fraction of each phase, gas and catalyst velocities, gas and particle temperatures as well as gas oil vapor species were computed assuming six lump kinetic reactions in the gas phase. The developed model is capable of predicting coke formation and its effect on catalyst activity reduction. In this research, the catalyst deactivation coefficient was modeled as a function of catalyst particle residence time, in order to investigate the effects of catalyst deactivation on gas oil and gasoline concentrations along the reactor length. The simulation results showed that droplet vaporization and catalytic cracking reactions drastically impact riser hydrodynamics and heat transfer.  相似文献   

15.
The kinetics of the thermally induced solid‐state polymerization (SSP) of nylon‐6 were examined in both a fixed‐bed reactor and a rotary reactor. Factors such as the regulator content, the reaction temperature and time, the particle size, the type and geometry of the nylon‐6 prepolymer, the nitrogen gas flow rate, the water content of the nitrogen gas flow, and the polymerization process were studied. The results showed that the regulator content, the reaction temperature and time, and the particle size were the primary factors, and that the others were negligible. Moreover, the SSP rate and number‐average molecular weight (Mn) increased with increasing reaction temperature and time and decreasing particle size. The SSP rate and Mn had maximum values with increasing regulator content in an experimental range of 0.03–0.07 wt %. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 616–621, 2002; DOI 10.1002/app.10341  相似文献   

16.
A kind of new modified computational fluid dynamics‐discrete element method (CFD‐DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas–solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k‐ε turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD‐DEM coupling method that combining k‐ε turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas‐tube and particle‐tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD‐DEM method is feasible and accurate for the simulation of complex gas–solid flow with heat transfer. And this will improve the farther simulation study of the gas–solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

17.
The correct calculation of cell void fraction is pivotal in accurate simulation of two‐phase flows using a computational fluid dynamics‐discrete element method (CFD‐DEM) approach. Two classical approaches for void fraction calculations (i.e., particle centroid method or PCM and analytical approach) were examined, and the accuracy of these methodologies in predicting the particle‐fluid flow characteristics of bubbling fluidized beds was investigated. It was found that there is a critical cell size (3.82 particle diameters) beyond which the PCM can achieve the same numerical stability and prediction accuracy as those of the analytical approach. There is also a critical cell size (1/19.3 domain size) below which meso‐scale flow structures are resolved. Moreover, a lower limit of cell size (1.63 particle diameters) was identified to satisfy the assumptions of CFD‐DEM governing equations. A reference map for selecting the ideal computational cell size and the suitable approach for void fraction calculation was subsequently developed. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2000–2018, 2014  相似文献   

18.
Fluid catalytic cracking (FCC) is the primary conversion process in oil refining. The performance of an FCC riser strongly depends on the interactions between oil/catalyst flow and cracking kinetics, but most FCC riser models do not consider such interactions. Accordingly, this work develops a computationally simple model capturing the dominant features of flow‐reaction coupling in the riser's dense phase and acceleration zones. Specifically, the particle–particle collision force and the particle–fluid interfacial force are considered. With a four‐lump kinetic model, the riser model predicts conversion and selectivity from the axial profile of the catalyst‐to‐oil ratio resulting from particle–fluid interfacial momentum transfer. The cracking intensity in the riser bottom zone is much greater than that calculated from conventional riser models, which neglects oil‐catalyst hydrodynamic coupling and catalyst dilution due to volume expansion. The present model compares well with published data and predicts conversion‐selectivity patterns that are qualitatively different from those obtained from conventional models. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

19.
The oxidative dehydrogenation of a 1‐butene/trans‐butene (1:1) mixture to 1,3‐butadiene was carried out in a two‐zone fluidized bed reactor using a Mo‐V‐MgO and a γ‐Bi2MoO6 catalyst. The significant operating conditions temperature, oxygen/butene molar ratio, butene inlet height, and flow velocity were varied to gain high 1,3‐butadiene selectivity and yield. Furthermore, axial concentration profiles were measured inside the fluidized bed to gain insight into the reaction network in the two zones. For optimized conditions and with a suitable catalyst, the two‐zone fluidized bed reactor makes catalyst regeneration and catalytic reaction possible in a single vessel. In the lower part of the fluidized bed, the oxidation of coke deposits on the catalyst as well as the filling of oxygen vacancies in the lattice can occur. The oxidative dehydrogenation reaction takes place in the upper zone. Thorough particle mixing inside fluidized beds causes permanent particle exchange between both zones. © 2016 American Institute of Chemical Engineers AIChE J, 63: 43–50, 2017  相似文献   

20.
Methanol electro‐oxidation is investigated at graphite electrodes modified with various platinum and nickel nano‐particle deposits using cyclic voltammetry. The modified electrodes are prepared by the simultaneous electrodeposition of metals from their salt solutions using potentiostatic and galvanostatic techniques. They show enhanced catalytic activity towards methanol oxidation in KOH solution. The catalytic activity of platinum nano‐particles is found to be significantly affected by the presence of relatively small amounts of nickel deposits. A comparison is made between the electrocatalytic activity of Pt/C and (Pt‐Ni)/C electrodes. The results show that the methanol electro‐oxidation current increases with an increase in the nickel content. In particular, the highest catalytic activity is achieved for platinum to nickel deposits of 95%:5% (wt.‐%), in other cases the catalytic activity decreases. It is found that Ni enhances the catalytic activity of Pt by increasing the number of active sites, as well as through an electron donation process from Ni to Pt. This process takes place once the nickel hydroxide (Ni(OH)2)/nickel oxy‐hydroxide (NiOOH) transformation begins. The effect of the methanol concentration on the methanol oxidation reaction is investigated. The order of reaction, with respect to methanol, at the modified (Pt‐Ni)/C electrode is found to be 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号