首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme‐based contained liquid membrane reactor to capture CO2 from the closed spaces is a very complicated process with large numbers of interdependent variables. A theoretical and experimental analysis of facilitated transport of CO2 across a hollow fiber membrane reactor filled with immobilized carbonic anhydrase (CA) by nanocomposite hydrogel was presented. CO2 concentration profiles in the feed gas phase and the membrane wall were achieved by numeric simulation. The effects of CO2 concentration, CA concentration, and flow rate of feed gas on CO2 removal performance were studied in detail, and the model solution agrees with the experimental data with a maximum deviation of up to 18.7%. Moreover, the effect of CO2 concentration on the required membrane areas for the same CO2 removal target (1 kg/day) was also investigated. This could provide real‐world data and scientific basis for future development toward a final efficient CO2 removal device. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

2.
In this work, a fluidized-bed membrane dual-type reactor was evaluated for CO2 removal in methanol synthesis process. The feed synthesis gas is preheated in the tubes of the gas-cooled reactor and flowing in a counter-current mode with reacting gas mixture in the shell side. Due to the hydrogen partial pressure driving force, hydrogen can penetrate from feed synthesis gas into the reaction side through the membrane. The outlet synthesis gas from this reactor is fed to tubes of the water-cooled packed-bed reactor and the chemical reaction is initiated by the catalyst. The methanol-containing gas leaving this reactor is directed into the shell of the gas-cooled reactor and the reactions are completed in this fluidized-bed side. A two-phase dynamic model in bubbling regime of fluidization was developed in the presence of long-term catalyst deactivation. This model is used to compare the removal of CO2 in a FBMDMR with a conventional dual-type methanol synthesis reactor (CDMR) and a membrane dual-type methanol synthesis reactor (MDMR). The simulation results show a considerable enhancement in the CO2 conversion due to have a favourable profile of temperature and activity along the fluidized-bed membrane dual-type reactor relative to membrane and conventional dual-type reactor systems.  相似文献   

3.
4.
Biomass gasification combined with CO2 absorption-enhanced reforming (AER) in a bubbling fluidized bed (BFB) reactor is numerically studied via the multiphase particle-in-cell (MP-PIC) method featuring thermochemical and polydispersity sub-models. A novel bubble detection algorithm is proposed for efficiently characterizing bubble morphology. The effects of several crucial operating parameters on the microscale particle behaviors, mesoscale bubble dynamics, and macroscale reactor performance of the AER gasification process are analyzed. Compared with conventional gasification, AER gasification reduces the CO2 concentration by 33.58% but elevates the H2 concentration by 32.13%. Higher operating temperature and steam-to-biomass (S/B) ratio promote H2 generation but deteriorate gasification performance. A lower operating pressure improves gas–solid contact efficiency and gasification performance as the increased operating pressure inhibits bubble dynamics and particle kinematics. Compared with pure sand as bed material, the mixed bed material (CaO:sand = 1:1) significantly improves gasification performance by enhancing H2 generation and CO2 removal.  相似文献   

5.
The influence of two differently cross‐linked polyacrylate particles on CO2 hydrate formation was investigated. A series of up‐scaling experiments from small (high‐pressure differential scanning calorimetry, HP‐DSC) over medium (glass reactor) to large scale (HP‐reactor) was carried out. It was found out that there is a low influence on the induction time, which is an essential key parameter of the hydrate formation. The results show the same trends: with a low degree of cross‐linker used in low concentration CO2 hydrate formation could be enhanced.  相似文献   

6.
To investigate the performance of a jet loop reactor with the two-fluid swirl nozzle (TSN), CO2 absorption experiments in an alkaline solution were performed. The experimental results obtained in the reactor were compared with those in a jet loop reactor with the two-fluid conventional nozzle (TCN). The neutralization time of alkaline solution and the CO2 removal efficiency were used as the indices for a comparison of the reactor performance. Due to the swirling flow, the neutralization times of alkaline solutions by CO2 in the reactor with the TSN were shortened compared with those in the reactor with the TCN. Also, the instantaneous and/or overall CO2 removal efficiencies in the reactor with the TSN were higher than those in the reactor with the TCN at the same liquid circulation flow rate.  相似文献   

7.
A numerical study is performed in order to evaluate the performance and optimal operating conditions of a palladium membrane reactor for methanol synthesis. A novel reactor configuration with a Pd wall, which is perm‐selective to hydrogen, has been proposed. In this configuration the reactants are added to the tube side while pure hydrogen is added to the shell side, as a result, the hydrogen diffuses across the membrane from the shell side to the tube side. In this membrane reactor, hydrogen penetrates to the reaction side in order to maintain a suitable hydrogen level in the whole length of the reactor and shift the equilibrium reaction. The effects of different parameters on the methanol output mole fraction were investigated in the co‐current mode. These parameters were membrane thickness, reaction side flow rate, reaction side pressure, shell side pressure and H2/CO2 ratio in the feed.  相似文献   

8.
Sorption‐enhanced glycerol reforming, an integrated process involving glycerol catalytic steam reforming and in situ CO2 removal, offers a promising alternative for single‐stage hydrogen production with high purity, reducing the abundant glycerol by‐product streams. This work investigates this process in a fixed‐bed reactor, via a two‐scale, nonisothermal, unsteady‐state model, highlighting the effect of key operating parameters on the process performance. CO2 adsorption kinetics was investigated experimentally and described by a mathematical reaction‐rate model. The integrated process presents an opportunity to improve the economics of green hydrogen production via an enhanced thermal efficiency process, the exothermic CO2 adsorption providing the heat to endothermic steam glycerol reforming, while reducing the capital cost by removing the processing steps required for subsequently CO2 separation. The operational time of producing high‐purity hydrogen can be enhanced by increasing the adsorbent/catalyst volume ratio, by adding steam to the reaction system and by increasing the inlet reactor temperature. © 2012 American Institute of Chemical Engineers AIChE J, 59: 2105–2118, 2013  相似文献   

9.
An assemble‐type plate reactor was developed and its intensified heat transfer compared to that of a conventional tubular reactor in methane reforming was confirmed. This characteristic enables accurate reaction kinetic analysis because of quasi‐isothermal operation with mild pressure loss. Reduced experiment cost is one of the features of the assemble‐type reactor. Simple thermal design equations applicable to plate reactors were also assessed. From experiments and accurate reaction analysis using the plate reactor it is suggested that H2O and CO2 have similar reactivity for a commercial Ni/α‐Al2O3 catalyst. The partial pressure of the oxidizing agent had much more influence on the reactivity of methane reforming than the species of this agent.  相似文献   

10.
The power‐to‐gas process is an option to transform fluctuating renewable electric energy into methane via water electrolysis and subsequent conversion of H2 by methanation with CO2. The dynamic behavior of the methanation reactor may then be a critical aspect. The kinetics of CO2 methanation on a Ni‐catalyst were determined under isothermal and stationary conditions. Transient isothermal kinetic experiments showed a fast response of the rate on step changes of the concentrations of H2, CO2; in case of H2O, the response was delayed. Non‐isothermal experiments were conducted in a wall‐cooled fixed‐bed reactor. Temperature profiles were measured and the effect of a changing volumetric flow was studied. The experimental data were compared with simulations by a transient reactor model.  相似文献   

11.
A highly efficient technique of contaminant gas reduction, Turbulent Contact Absorber (TCA), is applied to CO2 removal from a typical flue gas. Aqueous K2CO3 sorbent was evaluated as a regenerable sorbent for CO2 from the flue gas. In order to identify the system, momentum and mass balance equations were written for the TCA tower. A flat plate falling film model was employed to simulate the TCA tower and the effect of turbulence was included in mass and momentum transfer coefficients. To check the accuracy of the model, a pilot scale TCA was built and operated. A Testo type gas analyzer was used to detect gas concentrations at the inlet and outlet of the rig. The model was validated successfully with pilot plant data. The effect of velocity and K2CO3 concentration on the TCA performance has also been carried out. It was found that the bed pressure drop increases linearly with gas velocity and then remains constant. An increase in the liquid flow rate increases liquid holdup, which leads to a rise in bed pressure drop. Higher turbulence within the TCA causes a velocity peak to shift from hypothetical gas‐liquid interface towards the falling film plate. An increase of the K2CO3 concentration from 1.0 g mol/L to 2.0 g mol/L was found to give an increase in CO2 removal by about 4 %.  相似文献   

12.
The kinetic behavior of NiCeMgAl bimodal pore catalyst for methane reforming with CO2 was investigated after the elimination of external and internal diffusion effects in a fixed‐bed reactor as a function of temperature and partial pressures of reactants and products. Increase in CO2 partial pressure favors the consumptions of CH4 and CO2 but inhibits the formation of H2 due to the existence of reverse water gas shift (RWGS) reaction. The reforming rate increased first and then reached a horizontal stage with the rise of CH4 partial pressure. A Langmuir–Hinshelwood model was developed assuming that the carbon deposition is ignorable but the RWGS reaction is non‐ignorable and the removal of adsorbed carbon intermediate is the rate‐determining step. A nonlinear least‐square method was applied to solve the kinetic parameters. The derived kinetic expression fits the experimental data very well with a R2 above 0.97, and also predicts the products flow rate satisfactorily. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2019–2029, 2017  相似文献   

13.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

14.
The internal structure design of membrane module is very important for gas removal performance using membrane contactor via physical absorption. In this study, a novel membrane contactor developed by weaving polytetrafluoroethylene (PTFE) hollow fibers was applied to remove CO2 from 60% N2 + 40% CO2 mixture (with CO2 concentration similar to that of biogas) at elevated pressure (0.8 MPa) using water as absorbent. Compared with the conventional module with randomly packed straight fibers, the module with woven PTFE fibers exhibited much better CO2 absorption performance. The weaving configuration facilitated the meandering flow or Dean vortices and renewing speed of water around hollow fibers. Meanwhile, the undesired influences such as channeling and bypassing were also eliminated. Consequently, the mass transfer of liquid phase was greatly improved and the CO2 removal efficiency was significantly enhanced. The effects of operation pressure, module arrangement, feed gas, and water flow rate on CO2 removal were systematically investigated as well. The overall mass‐transfer coefficient (KOV) varied from 1.96 × 10?5 to 4.39 × 10?5 m/s (the volumetric mass‐transfer coefficient KLa = 0.034–0.075 s?1) under the experimental conditions. The CO2 removal performance of novel woven fiber membrane contactor matched well with the simulation results. © 2017 American Institute of Chemical Engineers AIChE J, 64: 2135–2145, 2018  相似文献   

15.
Hollow fiber MFI zeolite membranes were modified by catalytic cracking deposition of methyldiethoxysilane to enhance their H2/CO2 separation performance and further used in high temperature water gas shift membrane reactor. Steam was used as the sweep gas in the MR for the production of pure H2. Extensive investigations were conducted on MR performance by variations of temperature, feed pressure, sweep steam flow rate, and steam‐to‐CO ratio. CO conversion was obviously enhanced in the MR as compared with conventional packed‐bed reactor (PBR) due to the coupled effects of H2 removal as well as counter‐diffusion of sweep steam. Significant increment in CO conversion for MR vs. PBR was obtained at relatively low temperature and steam‐to‐CO ratio. A high H2 permeate purity of 98.2% could be achieved in the MR swept by steam. Moreover, the MR exhibited an excellent long‐term operating stability for 100 h in despite of the membrane quality. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3459–3469, 2015  相似文献   

16.
Amine solutions were applied in carbon dioxide removal from a model mixture of biogas, carried out in a loop reactor system. In addition, the effect of CO2 absorption acceleration in the presence of piperazine was confirmed and quantified, relating the obtained CO2 loading with the piperazine concentration. Further, the interactions of CO2 and water in aqueous amine solutions were discussed. The obtained acid gas loadings were accurately described taking into account the effect of the dissolved CO2 on the equilibrium constant. A logarithmic absorption isotherm that follows from such considerations and a saturation‐type isotherm were compared. In describing the experimental data, advantages and disadvantages of both approaches are discussed.  相似文献   

17.
A three-phase slurry reactor has been employed to increase the CO2 conversion and decrease the selectivity of CO in the direct hydrogénation of CO2 to hydrocarbons, as it is beneficial for removal of the heat generated due to highly exothermic nature of the reaction. Experiments were conducted over iron-based catalysts (Fe-Cu-K-Al, dp,=45-75 Μm) in a slurry reactor. It was found that the slurry reactor is preferable to the fixed bed reactor. The productivity and selectivity of hydrocarbons in the slurry reactor appeared to be better than that in the fixed bed reactor for the hydrogénation of CO2. The CO2 conversion was increased with increasing reaction temperature (275-300 ‡C), pressure (1-2.5 MPa) or H2/CO2 ratio (2-5) in the three-phase slurry reactor. The CO2 conversion was increased with increasing the amount of CO2 fed.  相似文献   

18.
A new absorption liquid based on amino acid salts has been studied for CO2 removal in membrane gas-liquid contactors. Unlike conventional gas treating solvents like aqueous alkanolamines solutions, the new absorption liquid does not wet polyolefin microporous membranes. The wetting characteristics of aqueous alkanolamines and amino acid salt solutions for a hydrophobic membrane was studied by measuring the surface tension of the liquid and the breakthrough pressure of the liquid into the pores of the membrane. The dependence of the breakthrough pressure on surface tension follows the Laplace-Young equation. The performance of the new absorption liquid in the removal of CO2 was studied in a single fiber membrane contactor over a wide range of partial pressures of CO2 in the gas phase and amino acid salt concentrations in the liquid. A numerical model to describe the mass transfer accompanied by multiple chemical reactions occurring during the absorption of CO2 in the liquid flowing through the hollow fiber was developed. The numerical model gives a good prediction of the CO2 absorption flux across the membrane for the absorption of CO2 in the aqueous amino acid salt solutions flowing through the hollow fiber.  相似文献   

19.
The sulfur tolerance of mono‐ and bimetallic ruthenium catalysts for CO2 hydrogenation was investigated in microchannel reactors. H2S was selected as a model compound. It was found that a Ru/CeO2 catalyst deactivates rapidly. Ni was a much better additive to improve the catalyst stability compared to Rh and serves as a sulfur trap. The influence of the support was evaluated showing that a SiO2‐supported catalyst has a higher stability and better selectivity compared to CeO2 and TiO2. A plant concept was developed comprising two‐step methanation with a first adiabatic reactor stage followed by a plate heat‐exchanger reactor with integrated cooling which allows more than 97 % CO2 conversion. A pilot plant will be put into operation in connection with a biogas plant and an electrolyser of 50 kW power consumption.  相似文献   

20.
江罗  陈标华  张吉瑞 《化工学报》2012,63(11):3519-3524
用浸渍法制备了以Al2O3为载体、Ni为活性组分的Ni/Al2O3二氧化碳甲烷化催化剂,在等温固定床反应器中研究了在Ni/Al2O3催化剂作用下,高纯氯化氢中微量CO2甲烷化反应效果,并考察了温度、压力、氯化氢体积空速以及H2/CO2摩尔比对CO2转化率的影响,同时研究了催化剂活性、稳定性及其再生性能。结果表明,在温度为250℃、压力为4.0 MPa、氯化氢空速为100 h-1、H2/CO2摩尔比为500:1条件下,CO2甲烷化反应效果最好,其转化率可达到90%左右,对于高纯氯化氢中微量CO2的脱除起到很好的效果;催化剂在温度高于300℃时,反应不久后会迅速失活;催化剂再生性能只能部分恢复到新鲜水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号