首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An autothermal membrane reformer comprising two separated compartments, a methane oxidation catalytic bed and a methane steam reforming bed, which hosts hydrogen separation membranes, is optimized for hydrogen production by steam reforming of methane to power a polymer electrolyte membrane fuel cell (PEMFC) stack. Capitalizing on recent experimental demonstrations of hydrogen production in such a reactor, we develop here an appropriate model, validate it with experimental data and then use it for the hydrogen generation optimization in terms of the reformer efficiency and power output. The optimized reformer, with adequate hydrogen separation area, optimized exothermic‐to‐endothermic feed ratio and reduced heat losses, is shown to be capable to fuel kW‐range PEMFC stacks, with a methane‐to‐hydrogen conversion efficiency of up to 0.8. This is expected to provide an overall methane‐to‐electric power efficiency of a combined reformer‐fuel cell unit of ~0.5. Recycling of steam reforming effluent to the oxidation bed for combustion of unreacted and unseparated compounds is expected to provide an additional efficiency gain. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

2.
利用Fluent软件对微通道反应器中天然气废气重整进行数值模拟。利用甲烷来代替天然气进行模拟。多通道反应器由具有平行通道的堇青石块组成,每个平行通道用Rh/Al_2O_3催化剂洗涂。由于堇青石的低热导率,通道之间的热传递被忽略。研究了进料温度,燃料组成和天然气中存在的丙烷对温度和产物分布的影响。通过模拟结果可得出:开始温度沿着通道良好地分布,并且没有形成明显的热点;增加进料温度有利于甲烷转化和氢气生产,但会导致温度分布不均;提高进料中蒸汽的量有助于增加氢气形成,但轻微地减弱了甲烷转化;提高入口处的O_2/C比值可导致甲烷转化率和温度成比例地增加。  相似文献   

3.
张莉  邢耀华  钟杰  徐宏  曹军 《化工学报》2016,67(2):557-562
针对1 kW 固体氧化物燃料电池热电联供(SOFC-CHP)系统开发了集成催化燃烧、换热及蒸汽重整的反应器,搭建了性能评价系统,系统研究了燃烧侧气体组分及工艺参数对该反应器性能的影响规律。实验结果表明:在反应器燃烧侧气体入口温度为300℃、空燃比为10:1、电堆燃料利用率为65%、水碳比为3 的条件下,重整侧转化率达到73.6%,重整尾气中H2 含量为67.5%。电堆燃料利用率对重整反应转化效率影响较大,其值大于80%时,采用尾气燃烧的余热回收方式无法有效为蒸汽重整提供所需热量。在150~350℃范围内,降低燃烧侧气体入口温度对重整反应效率影响较小,建议采用尾气先换热再进行催化燃烧的流程设计,保证重整效率的前提下可有效提升系统热效率。空燃比的降低可小幅度提升重整效率,在保证电堆反应温度稳定的前提下,适当降低空燃比可减少空气压缩机的功耗,从而提升整个系统的效率。研究成果对SOFC-CHP 系统的优化和整体效率提升具有指导意义。  相似文献   

4.
In this paper, the effect of the fluidization concept on the performance of methane steam reforming has been investigated by comparing a fluidized-bed steam reformer (FBSR) with an industrial-scale conventional steam reformer (CSR). Also, a fluidized-bed thermally coupled steam reformer (TCFBSR) and a fixed-bed thermally coupled steam reformer (TCSR) have been compared. In thermally coupled reactors, the hydrogenation of nitrobenzene to aniline exothermic reaction is employed. A steady state one dimensional heterogeneous model is applied to analyze methane conversion and hydrogen production for steam reforming of methane in different reactors (CSR, FBSR, TCSR, and TCFBSR). The modeling results show that, in FBSR, hydrogen production and methane conversion are increased by 2.13 and 0.52%, respectively, in comparison with CSR. Also, by using fluidized catalysts instead of fixed ones in TCSR, methane conversion and hydrogen yield are increased from 0.2776 to 0.2934 and from 0.9649 to 0.9836, respectively. These improvements represent the appropriate effect of the fluidization concept on the enhancement of hydrogen production in different steam reformers.  相似文献   

5.
The overall objective of the project is to investigate, design and test an improved steam reformer for fuel cell power plants.

Catalytic combustion is used to minimise the disadvantages of conventional external reforming. By integrating various technologies, smaller-scale reformer, lower emission levels and reduced start-up time along with improved temperature control can be achieved.

Catalytic combustion is used to generate the heat required for the reforming reaction, thus avoiding NOx formation. The heat can be generated locally and made available for the reforming reaction using a thermally conductive substrate.

The first results of the catalytic test reactor show good conversion rates for both the combustion and the reforming reaction. Based on the hydrogen production rate, the initial objectives for the volume of the reformer have proven to be feasible.

The results are used to build a 20 kW integrated test reactor.  相似文献   


6.
Fuel reforming is an attractive method for performance enhancement of internal combustion engines fueled by natural gas, since the syngas can be generated inline from the reforming process. In this study, 1D and 2D steady-state modeling of exhaust gas reforming of natural gas in a catalytic fixed-bed reactor were conducted under different conditions. With increasing engine speed, methane conversion and hydrogen production increased. Similarly, increasing the fraction of recirculated exhaust gas resulted in higher consumption of methane and generation of H2 and CO. Steam addition enhanced methane conversion. However, when the amount of steam exceeded that of methane, less hydrogen was produced. Increasing the wall temperature increased the methane conversion and reduced the H2/CO ratio.  相似文献   

7.
A novel plasma-matrix reformer (PMR) was suggested for methane conversion into hydrogen-rich fuel. To demonstrate the possibility of reforming performance, characteristics of product gas and CH4 conversion were identified according to O2/C ratio, water vapor supply, reformed gas recirculation, and water feed in the recirculation gas affecting energy conversion and hydrogen production. When the reformed gas recirculation and water feed to the recirculation pipe were performed at the same time, hydrogen production and energy conversion efficiency were superior compared to the conventional reforming method. The optimal operating conditions of the PMR were determined. The obtained high energy conversion efficiency and hydrogen selectivity indicated the applicability to solid oxide fuel cell stacks for residential power generation.  相似文献   

8.
The present study developed a low-CO methanol processor for the online supply of hydrogen to a proton exchange membrane fuel cell (PEMFC) composed of a steam reformer, a catalytic combustor and a reactor for the removal of CO. Commercial Cu/ZnO/Al2O3- and Pt/Al2O3-based catalysts were used in the methanol steam reforming and the preferential oxidation (PROX) reactor, respectively. The steam reformer was successfully heated with a catalytic combustor at room temperature without any additional electrical power supply. Hydrogen gas was obtained at a flow rate of 43.0 L h−1 using a feed flow rate of 39.5 ml h−1 (S/C=1.1) and an operation temperature of 250 °C, corresponding to a power output of 59 We. The CO concentration could be maintained at 4–5 ppm for stable operation.  相似文献   

9.
Microscale autothermal reactors remain one of the most promising technologies for efficient hydrogen generation. The typical reactor design alternates microchannels where reforming and catalytic combustion of methane occur, so that exothermic and endothermic reactions take place in close proximity. The influence of flow arrangement on the autothermal coupling of methane steam reforming and methane catalytic combustion in catalytic plate reactors is investigated. The reactor thermal behavior and performance for cocurrent and countercurrent are simulated and compared. A partial overlapping of the catalyst zones in adjacent exothermic and endothermic channels is shown to avoid both severe temperature excursions and reactor extinction. Using an innovative, optimization‐based approach for determining the catalyst zone overlap, a solution is provided to the problem of determining the maximum reactor conversion within specified temperature bounds, designed to preserve reactor integrity and operational safety. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

10.
The microchannel reactor with combustor for methanol steam reforming was fabricated to produce hydrogen for onboard proton exchange membrane (PEM) fuel cell device. A commercial copper-containing catalyst (Cu/ZnO/Al2O3) and Pt/ZrO2 were used as a catalyst for methanol steam reforming and combustion reaction, respectively. It was found that catalyst layer with zirconia sol solution in microchannel showed no crack on the surface of catalyst layer and an excellent adherence to stainless steel microchannel even after reaction. The temperature of combustor could be controlled between 200 and 300 °C depending on the methanol feed rate. The hydrogen flow of 3.9 l h−1 hydrogen was obtained with the reforming feed flow rate of 3.65 ml h−1 at 270 °C.  相似文献   

11.
This paper presents a performance analysis of a dual-bed autothermal reformer for hydrogen production from methane using a non-isothermal, one dimensional reactor model. The first section of Pt/Al2O3 catalyst is designed for oxidation reaction, whereas the second one based on Ni/MgAl2O4 catalyst involves steam reforming reaction. The simulation results show that the dual-bed autothermal reactor provides higher reactor temperature and methane conversion compared with a conventional fixed-bed reformer. The H2O/CH4 and O2/CH4 feed ratios affect the methane conversion and the H2/CO product ratio. The addition of steam at lower temperatures to the steam reforming section of the dual-bed reactor can produce the synthesis gas with a higher H2/CO product ratio.  相似文献   

12.
The coupling of steam reforming and oxidative reforming of methane for the efficient production of hydrogen is investigated over Ni/Al2O3 catalyst in a novel circulating fast fluidized-bed membrane reformer (CFFBMR) using a rigorous mathematical model. The removal of product hydrogen using palladium hydrogen membranes “breaks” the thermodynamic equilibrium barrier exists among the reversible reactions. Oxygen can be introduced into the adiabatic CFFBMR for oxidative reforming by direct oxygen (or air) feed and through dense perovskite oxygen membranes. The simulations show that high productivity of hydrogen can be obtained in the CFFBMR. The combination of these two different processes does not only enhance the hydrogen productivity but also save the energy due to the exothermicity of the oxidative reforming. Based on the preliminary investigations, four parameters (number of hydrogen membranes, number of oxygen membranes, direct oxygen feed rate and steam-to-carbon feed ratio) are carefully chosen as main variables for the process optimization. The optimized result shows that the hydrogen productivity (moles of hydrogen produced per hour per m3 of reactor) in the novel CFFBMR is about 8.2 times higher than that in typical industrial fixed-bed steam reformers.  相似文献   

13.
重整催化剂是影响重整制氢系统造价和寿命的重要因素。由于在所需重整温度下容易烧结积炭,廉价的Ni系催化剂在分布式中小型重整反应器中的应用受到了限制。为了使Ni系催化剂在不易发生烧结积炭的温度下工作,分析了在一定原料CH4空速和转化率下入口气体组成对重整工作温度的影响,并探讨了在原料气中导入循环气来改变重整入口气体组成的方法。结果表明:Ni系催化剂在导入一定组成和流量比的循环气与不导入循环气时相比,一定原料CH4空速和转化率下的重整工作温度大幅降低。据此,提出了一种用于燃料电池电站氢源系统的重整制氢工艺流程,其特征是将部分燃料电池阳极出口气作为循环气与原料气混合后导入重整反应器,使天然气重整工作温度大幅降低。  相似文献   

14.
Conventional synthesis gas production plants consist of a natural gas steam reforming to CO + 3H2 on Ni catalysts in a furnace. An alternative method for highly endothermic steam reforming is auto-thermal reforming. In this work, synthesis gas production by auto-thermal reforming was simulated based on a heterogeneous and one-dimensional model in two cases. The first case was the auto-thermal reformer of Dias and Assaf's study. The present work was validated by the reported experimental results. The second case was the fixed-bed catalytic auto-thermal reactor operated at high pressure, which was suitable for methanol production and Fischer–Tropsch reactions (baseline case). Then, the effect of operating variables on the system behavior was studied. Finally, Pareto-optimal solutions were determined by non-dominated sorting genetic algorithm II. The objectives included obtaining a H2/CO ratio of 2 in the produced synthesis gas and the maximum methane conversion. The adjustable parameters were the feed temperature, mass flux, and O2/CH4 and H2O/CH4 ratios in the feed.  相似文献   

15.
The catalytic performance of cermets made of 10% nickel or nickel oxide supported on YSZ (yttria-stabilized zirconia) for chemical looping combustion (CLC) and steam reforming (SR) of methane at 700 °C is investigated. Steam reforming of methane over the reduced catalyst resulted in a syngas containing more than 70% hydrogen and about 15% carbon monoxide. Chemical looping combustion of methane with insufficient lattice oxygen could potentially lead to 40–65% hydrogen rich gas products. Prolonged induction period (e.g. 30–80 min) in reduction of nickel oxide by methane has been observed in the presence of steam. The span of induction period increases by increasing steam partial pressure. It is hypothesized that the delayed reduction of nickel oxide is related to the retarding effect of steam on autocatalytic reactions of methane and hydrogen with lattice oxygen of nickel oxide and the subsequent reforming reactions.  相似文献   

16.
Basic application concepts of catalytic combustion are roughly classified into three types, and the development of catalysts, combustion performance and applicability are stated. On the diffusive catalytic combustion method, completeness of methane combustion and its reaction mechanism have been demonstrated by detailed combustion analysis of the burner and reaction kinetics. On the adiabatic lean premixed catalytic combustion method, applicability of a high-temperature catalyst system based on Mn-substituted hexaaluminate monolithic honeycomb to a 1.5 MW gas turbine combustor has been investigated through pressurized combustion tests and prototype engine-rig tests. As a result, a good outlook of the basic technical problems to overcome including the catalyst durability and the combustor control method was obtained, but another problem was that of the combustor capacity. In view of the progress of the non-catalytic lean premixed combustion method, it was concluded that a hybrid catalytic combustion method limiting catalytic combustion to the low-temperature range in this concept might become efficient in the future, but that it would depend on the development of efficient catalysts initiating their activity at about 350°C and having durability at 1000°C.  相似文献   

17.
The potential of methane steam reforming at microscale is theoretically explored. To this end, a multifunctional catalytic plate microreactor, comprising of a propane combustion channel and a methane steam reforming channel, separated by a solid wall, is simulated with a pseudo 2‐D (two‐dimensional) reactor model. Newly developed lumped kinetic rate expressions for both processes, obtained from a posteriori reduction of detailed microkinetic models, are used. It is shown that the steam reforming at millisecond contact times is feasible at microscale, and in agreement with a recent experimental report. Furthermore, the attainable operating regions delimited from the materials stability limit, the breakthrough limit, and the maximum power output limit are mapped out. A simple operation strategy is presented for obtaining variable power output along the breakthrough line (a nearly iso‐flow rate ratio line), while ensuring good overlap of reaction zones, and provide guidelines for reactor sizing. Finally, it is shown that the choice of the wall material depends on the targeted operating regime. Low‐conductivity materials increase the methane conversion and power output at the expense of higher wall temperatures and steeper temperature gradients along the wall. For operation close to the breakthrough limit, intermediate conductivity materials, such as stainless steel, offer a good compromise between methane conversion and wall temperature. Even without recuperative heat exchange, the thermal efficiency of the multifunctional device and the reformer approaches ~65% and ~85%, respectively. © 2008 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

18.
Turbulent Fluidized Bed (TFB) reactors appears to be ideal for exothermic and fast reactions such as catalytic oxidation of methane. In this paper, a use of TFB reactor for two catalytic oxidation of methane: catalytic combustion of methane and catalytic selective oxidation of methane for the ethylene synthesis is described. Catalytic fluidized bed combustion of methane is shown to be an emerging technology capable of meeting all environmental constraints as far as nitrogen oxides and carbon monoxide are concerned. This reaction carried out in both the bubbling and the turbulent regimes at 450-500 ‡C shows that the turbulent regime is more favourable. A self-sustained combustion with complete conversion and a zero emission of NOx and CO was achieved with a mixture of 4% methane in air at 500 ‡C. The two-phase model of Werther [1990], which phenomenologically introduces the enhancement factor due to chemical reaction, predicts quite well the combustor performance. The same model but without enhancement factor (slower reactions) predicts satisfactorily the experimental data for the oxidative coupling of methane and can be used to quantify the influence of homogeneous and catalytic reactions.  相似文献   

19.
采用管式固定床流动反应器,以Raney-Ni为催化剂,对甘油蒸气重整制氢进行了研究,考察了常压下不同温度、料液浓度和催化剂装载量对催化活性和氢气选择性的影响。结果表明:当进料浓度合适,催化剂Raney-Ni可在较低温度下呈现出对蒸气重整制氢反应较好的催化活性和选择性。当温度为280℃、料液浓度为5%(质量分数)、流量为0.5 mL/min时,碳转化率和H_2产率分别可达99.9%和93.21%,H_2和CO选择性分别为80.70%和0.20%。  相似文献   

20.
Dual bed catalysts were found to produce high yields (>85%) of hydrogen from methane and air in a millisecond contact time reactor. The dual bed catalyst consisted of a 5 mm platinum combustion catalyst followed by a 5 mm nickel steam reforming catalyst. The platinum catalyst was used to totally oxidize approximately one-quarter of the methane feed to carbon dioxide and water. In the nickel catalyst, the carbon dioxide and water reformed the remaining methane to hydrogen and carbon monoxide. This process is favored at high flow rates, because the heat generated in the platinum catalyst is convected to the nickel catalyst at a higher rate. The heat delivered to the nickel catalyst favors the endothermic reforming reactions that generate the hydrogen and carbon monoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号