首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Hamdy  Y. M.  ElBatal  F. H.  Ezz-Eldin  F. M.  ElBatal  H. A. 《SILICON》2019,11(2):673-684
Silicon - MnO2, NiO, CoO and CuO doped in soda lime phosphate host glass were prepared. Combined optical and FTIR spectra were measured for the studied glasses before and after gamma irradiation....  相似文献   

2.
《Ceramics International》2022,48(2):2124-2137
In a bid to expand the amount of information available on glass systems and their potential applications for radiation shielding design, glass samples with the compositions (30-x)SrO-xAl2O3–68B2O3–2V2O5(x = 5, 7.5, 10, 12.5&15 mol %) coded as SABV0 - 4 were prepared by the melt-quenching technique and analyzed for their optical, structural, physical, and radiation shielding features. The glassy (amorphous) nature of the SABV glass samples was affirmed by broad peaks of X-ray diffraction spectra. Calculated values of density and molar volume shown opposite behavior and the variation of these values were discussed as structural modifications in the glass matrix. From recorded optical absorption spectra optical band gap energy (Eg)-indirect transition, Urbach energy and optical basicity were estimated. FTIR spectra were recorded for all the samples in the range 400 cm?1 to 4000 cm?1. The FTIR absorbance spectra unveiled the SABV network structure mainly incorporating of BO3 and BO4 units. Raman spectroscopy is achieved to detect the structural changes and at higher wavenumber, B–O stretching modes in [BO3] observed with one or two NBO's. The results of ESR spectra of glasses have indicated the highly covalent environment of vanadium ions. Analysis of the photon shielding parameters of the glasses which were obtained primarily from FLUKA Monte Carlo simulations and XCOM computations revealed photon energy and glass chemical composition dependence. The mass attenuation coefficient and effective atomic number ranged from 0.2668 to 0.3385 cm2g-1 and 12.98–15.93 accordingly as the weight fraction of Sr increased from 16.06 to 26.72% in the glasses. Generally, photon shielding ability of the SABV glasses follows the trend: SABV0 > SABV1 > SABV2 > SABV3 > SABV4. The thermal neutron total cross section follows the same trend with values fluctuating between 71.9553 and 80.6268 cm?1. However, SABV1 showed superior fast neutron moderating capacity among the glasses. The present SABV glasses showed outstanding photon shielding ability compared to common shields. The prepared glasses are thus suitable candidates for radiation protection applications.  相似文献   

3.
The optical absorption spectra of undoped soda lime silicate glass together with two glasses doped with either (1 % nano Fe2O3 ) or with both (1 % Nano Fe2O3 + 5 % cement dust) have been measured from 200 to 2400 nm before and after gamma irradiation with a dose of 8 Mrad. The undoped glass reveals strong UV absorption with two distinct peaks which are attributed trace ferric iron ions present as impurity. Upon gamma irradiation , this base glass exhibits three peaks at 240,310 and 340 nm and the resolution of an induced broad visible band centered at 530 nm. The two doped glasses show an additional small visible band at about 440 nm and followed by a very broad band centered at 1050 nm. Upon gamma irradiation, the two doped samples reveal the decrease of the intensities of the spectrum. The two additional bands are related to ferric (Fe+3) ions to the band at (440 nm) while and the broad band at 1050 nm is due to ferrous iron (Fe+2) ions. The decrease of the intensities of the UV-visible spectrum upon irradiation can be related to of capturing freed electrons during irradiation . Infrared spectra of the glasses reveal repetitive characteristic absorption bands of silicate groups including bending modes of Si–O–Si or O–Si–O, symmetric stretching , antisymmetric stretching and some other peaks due to carbonate , molecular water , SiOH vibrations . Upon gamma irradiation, the IR spectra reveal a small change in the base spectrum while the IR spectra of the two doped glasses remain unchanged. The change of the IR spectrum of the base glass is related to suggested changes in the bond angles or bond lengths of the mid band structural units. The doped glasses show resistance to gamma irradiation because the nano Fe2O3 can capture released electrons and positive holes.  相似文献   

4.
Heavy metal oxide glasses (composition 60 PbO, 20 Bi2O3 mol%) and containing 20 mol% conventional glass formers SiO2, B2O3, and P2O5 were prepared. Combined optical and Fourier transform infrared absorption spectra were measured for the prepared glasses to justify the role of glass formers in the optical spectra together with the network structural groups in such glasses. Also, the density and molar volume values were calculated to obtain some insight on the compactness and arrangement in the network. Optical measurements have been used to determine the optical band gap (Eg), Urbach energy (ΔE) and the refractive index (n). Optical spectra of all the samples reveal strong UV absorption which is related to the presence of unavoidable trace iron impurities (Fe 3+ ions) contaminated within the raw materials which were used for the preparation of the studied glasses. Additional near visible bands are observed in all prepared glasses due to characteristic absorption of Pb 2+ and Bi 3+ ions. Furthermore, The variations of the luminescence intensity, values of the optical band gap, band tail, and refractive index can be understood and related in terms of the structural changes that take place in the glass samples. The infrared absorption spectra of the prepared glasses show characteristic absorption bands related to the borate or silicate or phosphate network (BO3, BO4, SiO4, PO4 groups) together with vibrational modes due to Bi-O and Pb-O groups.  相似文献   

5.
Alkaline earth oxynitride glasses of (Ca, Mg)–Si–Al–O–N with different CaO/(CaO + MgO) molar ratios (0, 0.25, 0.5, 0.75, and 1) were successfully prepared using the sol-gel method, and their structural compositions were characterised by Raman and FT-IR techniques. The glass dynamic properties of thermal expansion coefficient, glass transition temperature (Tg), and static properties of density, molar volume, Vickers hardness and compressive strength were systematically measured and analysed. The results showed that the static properties exhibited an overall regular change as the CaO/(CaO + MgO) ratio gradually increased, while the dynamic properties had an obvious mixed alkaline earth effect, which represented the appearance of an extreme value point in CaO/(CaO + MgO) mole ratios of 0.25 and 0.75, respectively. The typical thermal expansion coefficient and Tg of mixed alkaline earth oxynitride glasses deviated far from the linear connection between single alkaline earth oxynitride glasses. Raman spectra and infrared spectra revealed that the ratio value of the Q3/(Q2+Q4) decreased (Qn: n = no. of bridging anions joining SiO4 tetrahedra) in the mixed alkaline earth oxynitride glasses with increasing the amount of Ca, confirming that Ca decreased the crosslinking between individual tetrahedra via the transformation of Q3 species into Q2 and Q4 species.  相似文献   

6.
Ramadan  R. M.  Abdelghany  A. M.  ElBatal  H. A. 《SILICON》2018,10(3):891-899

Bismuth phosphate glasses of the basic composition (Bi2O3 30 mol%-P2O5 70 mol%) with additional dopants 3d TM oxides (0.2 wt%) were prepared by the melting and annealing technique. Combined optical (UV/vis.) and FT infrared absorption spectra were measured for the prepared samples before and after gamma irradiation with a dose of 8 Mrad (8×104 Gy). Optical spectra reveal strong UV absorption bands due to trace iron impurity together with an additional absorption band due to Bi3+ beside characteristic absorption related to specific 3d TM ions with preference for the lower valences due to the reducing effect of phosphate host glass. FTIR spectra show vibrational bands due to phosphate chains with the sharing of absorption bands due to Bi-O vibrations. Gamma irradiation causes limited changes due to the presence of heavy metal Bi3+ ions which show some shielding behavior towards gamma irradiation as revealed by optical and FT infrared absorption measurements. Some suggested photochemical reactions are forward to interpret the changes in the UV spectra beside the formation of an induced phosphorus oxygen hole center (POHC) in the visible region.

  相似文献   

7.
Novel glass-ceramics of the nominal molar compositions 20Fe2O3·20B2O3·(60-x)V2O5· (xNa2O or xSrO) (where x?=?0 or 10) were prepared by traditional melt technique. Differential thermal analysis (DTA) was implemented to study the thermal behavior of the prepared glasses. Vanadium pentoxide (V2O5), iron vanadate (FeVO4), sodium vanadate (Na3VO4) and strontium vanadate (with different formulae) were crystallized and identified by X-ray diffraction (XRD) analysis under certain conditions of heat-treatment. Further characterization of glass and glass ceramics samples were performed using scanning electron microscope (SEM), density, electrical and dielectric measurements. In conclusion, our study elucidated that the substitution of vanadium by Na+ and Sr2+ ions enhanced the conductivity at 180?°C from 5.11?×?10?4 for unmodified glass to 2.93?×?10?3 and 1.03?×?10?2?S?cm?1 for Na- and Sr-modified glasses.  相似文献   

8.
Mona A. Ouis 《SILICON》2011,3(4):177-183
Some glasses based on Hench’s patented bioglass have been prepared with ZnO replacing Na2O or CaO in order to investigate their bioactivity in the glassy state or after conversion to their glass-ceramic derivatives. In-vitro investigations of bioactivity of the prepared glass and their glass-ceramics derivatives were carried out by Infrared absorption spectra (IR) of the samples before and after immersion in simulated body fluid (SBF) for different time periods at 37 °C. An X-ray Diffraction (XRD) analysis technique was performed on the glass-ceramic samples to identify the crystalline phases formed during the controlled thermal treatment. Chemical corrosion experiments were also performed to evaluate the chemical behaviour of both glassy and the glass-ceramic derivatives towards SBF. The IR results showed that the amount of the apatite layer formed on the surface of the sample containing ZnO depends on the wt% of ZnO content. The X-ray results indicate that there are two phases formed: sodium calcium silicate and kilchoanite. Weight loss data were observed to change depending on the percent of ZnO and the role of housing of Zn2+ in the glass structure. Corrosion behaviour of glass-ceramic derivatives indicates higher durability than in the corresponding parent glasses as expected.  相似文献   

9.
The effect of introduction of aluminum oxide into the composition of sodium silicate glasses has been studied by IR absorption and reflection spectroscopy. The change in the spectroscopic characteristics of glasses after their treatment with HNO3 and AgNO3 aqueous solutions is analyzed. The concentration profiles of Na+ and Ag+ ions in the surface layers of these glasses are determined by the HF-sectioning technique. It is found that silver ions predominantly interact with the [AlO4/2]- groups in the glass. The leaching of sodium ions, formation of amorphous silica in the surface layers of the treated glass samples, and exchange of sodium ions by hydrogen ions are revealed from changes in the spectra.  相似文献   

10.
The effect of introduction of aluminum oxide into the composition of sodium silicate glasses has been studied by IR absorption and reflection spectroscopy. The change in the spectroscopic characteristics of glasses after their treatment with HNO3 and AgNO3 aqueous solutions is analyzed. The concentration profiles of Na+ and Ag+ ions in the surface layers of these glasses are determined by the HF-sectioning technique. It is found that silver ions predominantly interact with the [AlO4/2]- groups in the glass. The leaching of sodium ions, formation of amorphous silica in the surface layers of the treated glass samples, and exchange of sodium ions by hydrogen ions are revealed from changes in the spectra.  相似文献   

11.
Ternary amorphous samples of 50TeO2-(50 ? x)V2O5-xK2O compositions with 0 ≤ x ≤ 20 (in mol %) have been prepared using the press-melt quenching method. The optical absorption spectra of glass have been recorded in the wavelength range 300–900 nm by UV-visible spectrophotometer. According to The Tauc and Urbach theories, the optical band gap and width of the tail of localized states have been evaluated. In addition the temperature glass transition (T g ) of glasses have been determined by differential scanning calorimetry, confirming the amorphous nature of samples. The density and molar volume have been studied, indicating act of K2O as network modifier.  相似文献   

12.
Ternary borate glasses containing LiF, ZnF2, NaF or CaF2 were prepared by full replacement of silica by borate in patented Hench′s bioglass. Prepared samples were examined for their corrosion behavior with the expected final formation of fluoroapatite after immersion in SBF (simulated body fluid). Characterization of the glasses was carried by FTIR (Fourier transform infrared) absorption spectra before and after immersion. DAT (deconvolution analysis technique) was used to identify the formation of fluoroxyapatite from FTIR data after immersion in SBF. X-ray diffraction analyses were done for all samples to identify the crystalline phases that were formed after immersion in SBF and also to determine the degree of crystallinity for each sample. Also, scanning electron microscopic (SEM) investigations were carried out to examine the morphological changes of the surfaces upon immersion and the effects of different individual fluoride additives. The solubility testing for glassy samples was performed and the changes in the pH of the leaching solution were measured and evaluated.  相似文献   

13.
The quaternary glasses of mixed divalent oxides including ZnO, MgO, CdO within a phosphate network former were prepared. Vanadium pentoxide was introduced as a dopant in the range from 0.5 to 3%. Optical and infrared absorption studies for all glass samples were carried out. The optical spectra reveal the presence of both V3+ and V4+ ions in the studied host mixed divalent oxides phosphate glass. Fourier transform infrared absorption spectral analysis indicates the appearance of distinct vibrational bands due to the presence of characteristic phosphate groups depending on the glass composition and the ratio of V2O5 content. The optical band gap and Urbach energy were calculated and discussed in relation to the effect of V2O5 content. Finally, the glasses were optically and structurally examined affter gamma irradiation with a dose of 80 KGy.  相似文献   

14.
Four soda lime silicate glass samples of composition (70 % SiO2+ 20 % Na2O+ 10 % CaO mol %) were prepared after adding 5 wt% cement dust to each sample mixture besides 0.1 wt% of one transition metal (TM) oxide of Fe, Co or Cu. The four samples were melted by a conventional melt-annealing technique at 1400 °C for 2.5 h. Density, UV/VIS, FTIR and DC conductivity measurements were performed for each glass. Experimental results indicate that there are only slight differences in the density values. The optical spectra reveal that the TM free sample and the sample containing iron ions have the same spectral features while the samples containing copper or cobalt exhibit distinct characteristic absorption bands due to each TM ion. FTIR spectra reveal characteristic vibrational bands due to stretching and bending modes of the silicate network. DC conductivity data show variations in the values of the studied samples according to the type of TM ions added. All the experimental results were correlated with each other in accordance with the current views on the constitution of the studied glasses.  相似文献   

15.
Lead silicate (LS) glasses of the basic composition PbO 75%, SiO2 25% together with samples containing (∼0.1%) of transition 3d metal oxides (Ti→Cu) were prepared. UV/VIS optical analysis for as prepared and after successive gamma irradiated samples were used to shed more light on the structural modifications that occur due to different dopants and different irradiation doses. The UV-Vis. spectral analysis for undoped glass shows induced absorption bands at 205–400 nm which are assumed to be correlated with the base host glass and dopant transition metal ion doped glasses and dose of irradiation. The positions of the bands are observed to change slightly by gamma irradiation due to the combined effect of induced defects from the host base glass or the transition metal added. Gamma irradiation is observed to cause a decrease in the intensities of the IR absorption bands of the prepared samples accompanied by losing sharpness. These features are related to more amorphicity or disorder by irradiation or to the possible changes in bond angle or bond length in the building groups arrangement.  相似文献   

16.
The structural, physical, and optical properties of prepared glass samples of the composition formula 30SiO2-(40-x)B2O3-20Na2O-10Al2O3-xY2O3, where x = 0, 1, 5, 7 (wt%) were studied before and after gamma irradiation using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The optical absorption spectra of study glasses were recorded in the UV/visible range of 200–900 nm. The optical band gap energies were calculated from absorption data. These results show that Eopt decreases with increasing concentration of Y2O3. The changes occurring in the optical parameters obtained from absorption spectra before and after irradiation have been referred to irradiation induced structural defects and compositional changes.  相似文献   

17.
A series of Ce3+/Dy3+‐doped oxyfluoride borosilicate glasses prepared by melt‐quenching method are investigated for light‐emitting diodes applications. These glasses are studied via X‐ray diffraction (XRD), optical absorption, photoluminescence (PL), color coordinate, and Fourier transform infrared (FT‐IR) spectra. We find that the absorption and emission bands of Ce3+ ions move to the longer wavelengths with increasing Ce3+ concentrations and decreasing B2O3 and Al2O3 contents in the glass compositions. We also discover the emission behavior of Ce3+ ions is dependent on the excitation wavelengths. The glass structure variations with changing glass compositions are examined using the FT‐IR spectra. The influence of glass network structure on the luminescence of Ce3+/Dy3+ codoped glasses is studied. Furthermore, the near‐ideal white light emission (color coordinate x = 0.32, y = 0.32) from the Ce3+/Dy3+ codoped glasses excited at 350 nm UV light is realized.  相似文献   

18.
Soda lime silicate glasses containing different amounts of iron slag 0–30 % were prepared. The chemical durability of the prepared glasses was examined by immersion in HCl or HNO3 solutions at room temperature. The results show that the glass durability increases with increasing the amount of slag in the glass composition to a certain amount, then followed by a decrease in the glass durability. Various mechanisms of corrosion and the role of the mobility of cations and their leaching into solution, also the effect of time of leaching are discussed. The densities of all glass compositions were measured. The quantitative analysis obtained from infrared absorption spectra in the range of (400–4000) cm?1 in relation to the effect of corrosion on the absorption spectra has been studied in terms of structural concepts. The topography of the glass surfaces was observed by scanning electron microscopy (SEM). The concentration percentage of the ions present on the glass surface was determined by Energy Dispersive X-ray analysis (EDX).  相似文献   

19.
《Ceramics International》2022,48(9):12497-12505
In the TeO2-WO3-GdF3 glass system, 42 different proportions of glass have been prepared, showing the ideal forming area. The influence of proportions on the density was measured and several devitrified samples were analyzed by XRD. Discussed the internal structure changes and the variation of component concentration by Raman and Fourier transform infrared spectra. The properties and structural features of glasses were analyzed in terms of molar volume. TeO2 and WO3 act as glasses former while GdF3 act as a modifier which forms mixed linkages Te–O–W, Te–F–W, etc. UV–Vis spectra were recorded to determine optical absorption/transmission and energy gap values. These results suggest that the TeO2-WO3-GdF3 glass system could be potentially used as photonic devices and basic materials.  相似文献   

20.
Photochromic glasses having composition (SiO2)45(B2 O 3)35(Al2O3)7.5(Na2O)12.5(AgBr), (Cu2O) doped with (CoO) x , in which, x = 0, 0.006, 0.02 and 0.07 g were prepared using the conventional melt technique. The amorphous nature of these glass samples was confirmed using X-ray diffraction analysis at room temperature. The absorption measurements in the infrared region of the spectrum were recorded in the wave number range (4000–400) cm?1. Spectral reflectance and transmittance at normal incidence of the prepared glass samples were recorded with a spectrophotometer in the spectral range 200–2500 nm. Experimental and theoretical densities of the prepared glass samples were measured, calculated and compared. Analytical expressions were used to calculate the real and imaginary parts of the refractive indices. Dispersion parameters such as: single oscillator energy, dispersion energy, average oscillator wavelength, and Abbe’s number were deduced and compared. Absorption dispersion parameters such as: optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter were calculated. Effects of doping with cobalt oxide CoO as a transition metal on linear and predicted nonlinear optical parameters were investigated and interpreted. Experimental results indicate that there is an optimum concentration of cobalt doping around 0.006 g. The optical band gap decreases with increasing doping and causes an increase in nonlinear optical parameters. Doping with cobalt oxide improves the linear and nonlinear optical properties of the prepared glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号