首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas absorption in aqueous solutions with Tween 80 and absorption processes based on hydrodynamics and mass transfer is determined. The impact of surfactant concentration on gas holdup and gas‐liquid interfacial area is analyzed, observing an increase of these parameters with surfactant concentration. The influence of liquid‐phase contamination on the absorption process is investigated on the basis of the liquid‐film mass transfer coefficient, removing the effect caused by the presence of a surfactant and the gas flow rate on the interfacial area and, thereby, on the volumetric mass transfer coefficient. The opposite effect on the mass transfer coefficient can be observed which decreases in the presence of the surfactant.  相似文献   

2.
The mass‐transfer characteristics of a new type of two‐impinging‐streams reactor (TISR) was studied by means of sodium sulfite solution as the liquid phase and air as the gas phase, in the presence and absence of various types of surface‐active agents (SAAs). The influences of anionic, cationic, and nonionic SAAs on the specific interfacial area and overall volumetric mass‐transfer coefficient obtained in the TISR were investigated. It was found that the presence of a little amount of the above‐mentioned contaminants increases the specific interfacial area and decreases the overall volumetric mass‐transfer coefficient. On the basis of the experimental results obtained for various types of SAAs, correlations were derived for the interfacial area as well as the Sherwood number for the liquid phase in terms of Froude, Reynolds, Schmidt, and Morton numbers.  相似文献   

3.
The behavior of chitosan and two kinds of chitosan derivatives in carbon dioxide absorption in a bubble column contactor is analyzed. The effects of absorption type (physical or chemical), polymer type, concentration, and liquid‐phase physical properties on hydrodynamics (bubble size, gas holdup, and specific interfacial area) and mass transfer (absorption rate and mass transfer coefficient) are evaluated.  相似文献   

4.
The interfacial tension is a material parameter describing the interface between two fluid phases. It is also a changing physical value in mass transfer processes beyond equilibrium. Thus, the measurement of change in interfacial tension characterizes adsorption and mass transfer processes at liquid‐liquid interfaces. The units of a pendant drop tensiometer can represent a mini mass transfer cell.  相似文献   

5.
Effects of various concentrations (0–5 ppm) of anionic (sodium dodecyl sulfate, SDS) and non‐ionic (Tween‐80 and Triton X‐405) surfactants on gas hold‐up and gas–liquid mass transfer in a split‐cylinder airlift reactor are reported for air–water. Surfactants were found to strongly enhance gas hold‐up. Non‐ionic surfactants were more effective in enhancing gas hold‐up compared to the anionic surfactant SDS. An enhanced gas hold‐up and a visually reduced bubble size in the presence of surfactants implied an enhanced gas–liquid interfacial area for mass transfer. Nevertheless, the overall gas–liquid volumetric mass transfer coefficient was reduced in the presence of surfactants, suggesting that surfactants greatly reduced the true liquid film mass transfer coefficient and this reduction outweighed the interfacial area enhancing effect. Presence of surfactants did not substantially affect the induced liquid circulation rate in the airlift vessel.  相似文献   

6.
Wall to bed heat transfer has been studied in three-phase fluidized beds with a cocurrent up-flow of water and air. Six sizes of glass beads, two sizes of activated carbon beads and one size of alumina beads, varying in average diameter from 0.61 to 6.9 mm and in density from 1330 to 3550 kg/m3, were fluidized in a 95.6 mm diameter brass column heated by a steam jacket. Complementary heat transfer experiments have been performed also for a gas–liquid cocurrent column and liquid–solid fluidized beds. The wall-to-bed coefficient for heat transfer in the gas–liquid–solid fluidized bed is evaluated on the basis of the axial dispersion model concept. The ratio of the wall-to-bed heat transfer coefficient in the gas–liquid–solid fluidized bed to that in the liquid–solid fluidized bed operated at the same liquid flow rate is correlated in terms of the ratio of the velocity of gas to that of liquid and the properties of solid particles. A correlation equation for estimating the wall-to-bed heat transfer coefficient in the liquid–solid fluidized bed is also developed.  相似文献   

7.
The carbon dioxide absorption process by triethanolamine aqueous solutions was analyzed in a bubble‐column reactor taking into account the chemical reaction mechanism, gas‐liquid interfacial area, and mass transfer rate. A speciation study of this gas‐liquid system was developed by 1H and 13C NMR spectroscopy in order to obtain the reaction mechanism and stoichiometry. The gas‐liquid interfacial area was evaluated considering the variations of bubble size distribution and gas holdup during the operation time. The liquid‐phase mass transfer coefficient was calculated from the carbon dioxide absorption rate data by interfacial area evolution and reaction stoichiometry.  相似文献   

8.
The present study deals with the pressure effects on the hydrodynamic flow and mass transfer within an agitated bubble reactor operated at pressures between 105 and 100 × 105 Pa. In order to clarify the flow behavior within the reactor, liquid phase residence time distributions (RTD) for different operating pressures and gas velocities ranging between 0.005 m/s and 0.03 m/s are determined experimentally by the tracer method for which a KCl solution is used as a tracer. The result of the analysis of the liquid‐phase RTD curves justifies the tank‐in‐series model flow for the operating pressure range. Good agreement is obtained between theoretical and experimental results assuming the reactor is operating as perfectly mixed. Two parameters characterizing the mass transfer are identified and investigated in respect to pressure: the gas‐liquid interfacial area and volumetric liquid‐side mass transfer coefficient. The chemical absorption method is used. For a given gas mass flow rate, the interfacial area as well as the volumetric liquid mass transfer coefficient decrease with increasing operating pressure. However, for a given pressure, a and kLa increase with increasing gas mass flow rates. The mass transfer coefficient kL is independent of pressure.  相似文献   

9.
Pressure drop, residence time distribution, dispersive behavior, liquid holdup, and mass transfer performance of gas–liquid flow in micropacked bed reactors (μPBRs) with different contact angles (CA) of particles are studied. The value of pressure drop for three types of beads can be obtained: copper beads (CA = 88.1°) > stainless steel beads (CA = 70.2°) > glass beads (CA = 47.1°). The liquid axial dispersion coefficient is 1.58 × 10−6 to 1.07 × 10−5 m2/s for glass beads and copper beads, which is smaller than those of trickle bed reactors. The liquid holdup of 400 μm copper beads is larger than that of 400 μm glass beads. The ratio of effective interfacial area enhancement is evaluated up to 55% for big contact angle beads compared with the hydrophilic glass beads. In addition, correlations of pressure drop, liquid holdup, and effective interfacial area in μPBRs with different wettability beads are developed and predicted values are in agreement with the experimental data.  相似文献   

10.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kLa. The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kLa in the downflow bubble column. Correlations for a and kLa for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

11.
Poly(ether sulfone)/activated carbon (PES–AC) hybrid beads, with various proportions of activated carbon (AC) or amounts of added propylene glycol (PG), were prepared with a liquid–liquid phase‐separation technique. The specific surface area, porosity, diameter, and pore volume of the prepared beads were characterized. The adsorption of creatinine from a Tyrode buffer solution (pH 7.4) on different PES–AC hybrid beads was investigated through batch experiments at 25°C. The experimental results suggested that creatinine adsorption was enhanced by an increase in the AC or PG proportion added during the preparation of the PES–AC hybrid beads. The mass‐transfer model was applied to the experimental data for the analysis of the kinetic results. The experimental creatinine adsorption isotherms were adequately fitted with both Langmuir and Freundlich equations. Tests of the hemolysis ratio and protein adsorption were carried out. The results showed that the hemolysis ratio of the prepared beads was lower than 5%. The adsorption of creatinine was affected by the presence of serum albumin but not significantly enough to hinder its applications in blood purification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1085–1092, 2007  相似文献   

12.
The theory of gas absorption accompanied by fast pseudo-fast order reaction which considered dependences of diffusivity, kinetic constant and Henry's law constant on absolute temperature and ionic strength was used to obtain values of effective interfacial areas and mass transfer coefficients in gas and liquid phase.

Experimental measurement of carbon dioxide absorption from mixture with air was performed in a pilot-plant column with expanded metal sheet packing irrigated with sodium hydroxide solution.

Resulting liquid and gas-side mass transfer coefficients are compared with values obtained from physical Absorption measurement of carbon dioxide into water and with measurement of gas-side mass transfer coefficient for sulphur dioxide in the same column.

The differences between determined values are discussed.  相似文献   

13.
Pure carbon dioxide was absorbed into distilled water and sodium hydroxide solution, in cocurrent two phase annular flow in helically coiled tubes in order to measure physical and chemical mass transfer coefficients and interfacial areas. (k*La) was correlated by the pressure drop in the test sections and interfacial areas were found to vary with the liquid phase energy dissipation. According to a new theory, (k*L) has been shown to be a function of the root mean square vorticity near the interface. The root mean square vorticity has been related to the pressure drop, gas density, liquid flow rate and liquid velocity. The physical mass transfer coefficients theoretically predicted are in good agreement with experimental results.  相似文献   

14.
活性炭粒子对K2CO3溶液中CO2化学吸收的强化   总被引:3,自引:1,他引:2  
The enhancement of chemical absorption of CO2 by K2CO3/H2O absorbents in the presence of activated carbon (AC) particles was investigated. The results show that the gas absorption rates can be enhanced significantly in the presence of AC particles,and the maximum enhancement factor 3.7 was observed at low stirring intensities.The enhancement factor increased rapidly with the solid loading during the initial period of absorption and then became mild gradually to a maximum value. Both the liquid-solid contact area and the probability of solid particles residing at the gas-liquid interface decreased with the increase of the particle size,leading to a negative effect on the enhancement of mass transfer. The influence of the particles on gas absorption decreased with the reaction rate. The stirring speed changed the interfacial coverage and mass transfer rate on the liquid side and consequently affected the mass transfer between the gas and liquid phases; the enhancement factor decreased with the stirring intensity. A heterogeneous two-zone model was proposed for predicting the enhancement factor and the calculated results agreed well with the experimental data.  相似文献   

15.
The enhancement of chemical absorption of CO2 by K2CO3/H2O absorbents in the presence of activated carbon (AC) particles was investigated. The results show that the gas absorption rates can be enhanced significantly in the presence of AC particles, and the maximum enhancement factor 3.7 was observed at low stirring intensities. The enhancement factor increased rapidly with the solid loading during the initial period of absorption and then be- came mild gradually to a maximum value. Both the liquid-solid contact area and the probability of solid particles residing at the gas-liquid interface decreased with the increase of the particle size, leading to a negative effect on the enhancement of mass transfer. The influence of the particles on gas absorption decreased with the reaction rate. The stirring speed changed the interfacial coverage and mass transfer rate on the liquid side and consequently affected the mass transfer between the gas and liquid phases; the enhancement factor decreased with the stirring intensity. A heterogeneous two-zone model was proposed for predicting the enhancement factor and the calculated results agreed well with the experimental data.  相似文献   

16.
The gas–liquid volumetric mass transfer coefficient was determined by the dynamic oxygen absorption technique using a polarographic dissolved oxygen probe and the gas–liquid interfacial area was measured using dual‐tip conductivity probes in a bubble column slurry reactor at ambient temperature and normal pressure. The solid particles used were ultrafine hollow glass microspheres with a mean diameter of 8.624 µm. The effects of various axial locations (height–diameter ratio = 1–12), superficial gas velocity (uG = 0.011–0.085 m/s) and solid concentration (εS = 0–30 wt.%) on the gas–liquid volumetric mass transfer coefficient kLaL and liquid‐side mass transfer coefficient kL were discussed in detail in the range of operating variables investigated. Empirical correlations by dimensional analysis were obtained and feed‐forward back propagation neural network models were employed to predict the gas–liquid volumetric mass transfer coefficient and liquid‐side mass transfer coefficient for an air–water–hollow glass microspheres system in a commercial‐scale bubble column slurry reactor. © 2012 Canadian Society for Chemical Engineering  相似文献   

17.
The effects of surfactant contaminations and activated carbon addition on physical gas absorption, and absorption with fast and instantaneous reaction (sulphite oxidation, carbon dioxide absorption into sodium hydroxide and monoethanol amine (MEA) solutions) have been studied in a stirred cell with a flat gas/liquid interface. Surfactants significantly decrease the liquid-side mass transfer coefficient kL even at very small concentrations. The surfactants can be removed by adsorption onto activated carbon (“surfactant grazing”).In absorption with fast chemical reaction of the gas (sulphite oxidation), the liquid side mass transfer coefficient kL has no effect on the absorption rate and, consequently, there are no effects of surfactant and activated carbon. CO2 absorption into sodium hydroxide solution may occur in the instantaneous absorption regime; then, any change in kL causes a proportional change in the absorption rate. In CO2 absorption into MEA solution, however, in the instantaneous regime, much stronger effects of surfactant and of its removal by activated carbon are observed. It is suggested that in the absence of surfactants surface convection (Marangoni instability) may occur in MEA solutions.  相似文献   

18.
The influence of molecular diffusion on liquid—liquid mass transfer in a stirred transfer cell has been found by measuring the rates transfer of helium and iso-butane from water to toluene and dekalin. These solutes have very different diffusion coefficients, their presence does not alter the physical properties of the liquids and, because their equilibrium distributions strongly favour the organic phases, the water phase mass transfer coefficient could be determined and was found to depend on the square root of the diffusion coefficient.The results are compared with the predictions of a model for liquid—liquid mass transfer under turbulent conditions, based on the approach of an eddy to the interface being restrained by interfacial tension and gravitational forces and taking into account eddy pressure fluctuations in both phases. This model provides a correlation for these results, as well as water phase mass transfer coefficients for the transfer of iso-butane from water to n-octanol, and previous stirred transfer cell results.  相似文献   

19.
The liquid film flow on different structured wires and chains is observed experimentally to assess the suitability of a structured packing consisting of vertical wires. The results show that liquid beads as they appear on cylindrical wires are inhibited by certain chain geometries. This increases the flooding gas load up to F = 12 Pa0.5. As the stabilized film shows no liquid bead motion, the liquid velocity at the interface is less which results in lower gas‐side mass‐transfer coefficients. An estimation of the packing characteristics for different chain geometries with an assumed wire packing density of 40,000 wires/m2 is made. The interfacial area, mass‐transfer coefficients, and consequently the separation efficiency strongly depend on the liquid load. However, the proposed gas‐side separation efficiencies are slightly lower compared to common structured packings but the advantages are higher load limits, a better liquid distribution, and lower pressure drop. © 2012 American Institute of Chemical Engineers AIChE J, 59: 295–302, 2013  相似文献   

20.
Particle-liquid mass transfer in a co-current three-phase fluidized bed of glass beads, water and air was studied with two measurement techniques. Both techniques measured the weight loss of a few particles coated with benzoic acid in a bed of inert glass beads. The effects of liquid and gas velocities, gas distribution and surface active agents on particle-liquid mass transfer in a three-phase fluidized bed were thus determined. In the absence of surface active agents in the liquid, particle-liquid mass transfer rates in a three-phase fluidized bed were up to 30% higher than in the corresponding liquid fluidized bed. When surface active agents were added to the liquid, the particle-liquid mass transfer rate was increased by up to about 100% in the three-phase fluidized bed, relative to the liquid fluidized bed. The particle-liquid mass transfer coefficient was found to be inversely proportional to the liquid hold-up in the three-phase fluidized bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号