首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc…). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called “BUCAL1”. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.  相似文献   

2.
基于蒙特卡罗方法的三维燃耗计算研究   总被引:2,自引:1,他引:1  
采用通过编写连接MCNP程序和ORIGEN2程序的接口处理程序的方法进行快中子系统的燃耗计算。由MCNP、ORIGEN2、接口处理程序和截面文件组成的软件系统可用于燃料或堆芯非均匀布置快中子系统的燃料同位素成分和燃耗反应性损失计算,在燃耗反应性损失计算中采用了伪裂变产物的方法。介绍程序系统的研制情况,并给出用该软件系统计算中国实验快堆首炉堆芯和OECD/NEAMOX燃料快堆基准题的燃耗计算结果。  相似文献   

3.
The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged.  相似文献   

4.
The IAEA's gas-cooled reactor program has coordinated international cooperation for an evaluation of a high temperature gas-cooled reactor's performance, which includes a validation of the physics analysis codes and the performance models for the proposed GT-MHR. This benchmark problem consists of the pin and block calculations and the reactor physics of the control rod worth for the GT-MHR with a weapon grade plutonium fuel. Benchmark analysis has been performed by using the HELIOS/MASTER deterministic code package and the MCNP Monte Carlo code. The deterministic code package adopts a conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation.In order to solve particular modeling issues in GT-MHR, recently developed technologies were utilized and new analysis procedure was devised. Double heterogeneity effect could be covered by using the reactivity-equivalent physical transformation (RPT) method. Strong core–reflector interaction could be resolved by applying an equivalence theory to the generation of the reflector cross sections. In order to accurately handle with very large control rods which are asymmetrically located in a fuel and a reflector block, the surface dependent discontinuity factors (SDFs) were considered in applying an equivalence theory. A new method has been devised to consider SDFs without any modification of the nodal solver in MASTER.All computational results of the HELIOS/MASTER code package were compared with those of MCNP. The multiplication factors of HELIOS for the pin cells are in very good agreement with those of MCNP to within a maximum error of 693 pcm Δρ. The maximum differences of the multiplication factors for the fuel blocks are about 457 pcm Δρ and the control rod worths of HELIOS are consistent with those of MCNP to within a maximum error of 3.09%. On considering a SDF in the core calculations, the maximum differences of the control rod worths are significantly decreased to be 7.7% from 21.5%. It is showed that there are good consistencies between the deterministic code package and the Monte Carlo code from the results of these benchmark calculations. Therefore, the HELIOS/MASTER 2-step procedure can be used as a standard reactor physics analysis tool for a prismatic VHTR.  相似文献   

5.
Abstract

It is very important to be able to predict the dose rates external to a flask package. Currently in Japan several shielding calculation codes are used to evaluate the dose rate around a package. It is, however, generally appreciated that there are differences between the results obtained when using different calculation codes for the same shielding calculation problems. The differences appear to be particularly important for gamma ray shielding calculations when using the point-kernel method on a package with a multi-layer wall because of the build-up factor. In this paper the calculation accuracy of some codes for gamma ray shielding calculations using the codes QAD and MARMER (a point-kernel method), the ANISN code (a discrete ordinate (Sn) method) and the MCNP code (a Monte Carlo method) are examined and compared using the benchmark problems. The calculation results are then compared with the results from a simulated actual flask package body wall. The results presented here show that the calculation results using MARNER and MCNP (which have recently been introduced into Japan) agree with the experimental measurements. These codes can therefore be used for future gamma shielding calculations and the calculation conditions of those codes in Japan.  相似文献   

6.
The aim of this study is to evaluate the capabilities of a newly developed burnup code called BUCAL1. The code provides the full capabilities of the Monte Carlo code MCNP5, through the use of the MCNP tally information. BUCAL1 uses the fourth order Runge Kutta method with the predictor–corrector approach as the integration method to determine the fuel composition at a desired burnup step. Validation of BUCAL1 was done by code vs. code comparison. Results of two different kinds of codes are employed. The first one is CASMO-4, a deterministic multi-group two-dimensional transport code. The second kind is MCODE and MOCUP, a link MCNP–ORIGEN codes. These codes use different burnup algorithms to solve the depletion equations system. Eigenvalue and isotope concentrations were compared for two PWR uranium and thorium benchmark exercises at cold (300 K) and hot (900 K) conditions, respectively. The eigenvalue comparison between BUCAL1 and the aforementioned two kinds of codes shows a good prediction of the systems’ k-inf values during the entire burnup history, and the maximum difference is within 2%. The differences between the BUCAL1 isotope concentrations and the predictions of CASMO-4, MCODE and MOCUP are generally better, and only for a few sets of isotopes these differences exceed 10%.  相似文献   

7.
文章介绍了在蒙特卡罗程序中,使用反复裂变几率的统计结果作为共轭通量的估计,并作为权重函数计算动力学参数βeff和Λ的方法,阐释了在连续能量蒙特卡罗程序MCNP和多群蒙特卡罗程序MCMG中实现这种方法的过程。数值校验结果表明:在几乎不带来附加计算量的同时,在MCMG中使用该方法统计得到的共轭通量与ANISN的共轭通量计算结果符合较好,在MCNP中使用该方法计算得到的中子动力学参数与基准测量结果符合较好。在蒙特卡罗程序中实现了高效率计算中子动力学参数的功能,为蒙特卡罗程序进一步用于反应堆动态行为的分析奠定了基础。  相似文献   

8.
对HTR-10初次临界的几何模型进行了对比和分析,运用基于蒙特卡罗方法的MCNP4B和TRIPOLI-4.3程序描述了高温气冷堆的包缀燃料颗粒在燃料球内的随机分布以及燃料球和石墨球在堆芯的随机混合分布应用TRIPOLI-4.3对HTR-10进行了初次临界物理计算,并且与已有的MCNP4B的计算结果进行了比较结果表明:基于蒙特卡罗方法的MCNP4B和TRIPOLI-4.3程序,采用适当的几何描述方式可以用手球床式高温气冷堆的初次临界堆芯物理计算.  相似文献   

9.
蒙特卡罗燃耗计算程序MCNTRANS的开发与验证   总被引:4,自引:4,他引:0  
于超  朱庆福 《原子能科学技术》2013,47(10):1824-1828
本文介绍了开发的蒙特卡罗燃耗计算程序MCNTRANS。MCNTRANS的中子学计算参数直接采用MCNP5程序的反应率计算值,燃耗计算方法采用图论算法跟踪燃耗链,同时,对实际燃耗过程进行详细分析以提高计算精度与程序适用性,并使用预估 校正方法以获取较大的燃耗计算步长。程序计算结果通过OECD/NEA与JAERI燃耗基准题实验结果进行验证,并与其他程序的计算结果进行比较。结果表明,MCNTRANS程序在不同燃耗深度下的计算结果和实验值与其他程序的计算值符合较好,部分锕系核素与裂变产物的计算精度更高。  相似文献   

10.
Application of different cross section libraries and different versions of Monte Carlo code MCNP has an influence on the calculation results and therefore determination of criticality safety calculation bias forms part of improving accuracy of simulations using computational systems and codes. In this paper, criticality calculations results are presented for 21 problems coming from the International Handbook of Evaluated Criticality Benchmark Experiments (International Handbook, 2007). All of these problems are related to VVER-440 reactors because of their extensive use in Slovakia. Three libraries of cross section data were investigated:
  • •JEFF-3.1 General purpose library,
  • •ENDF/B-VII library,
  • •JENDL 4.0.
Calculations were provided with MCNP5-1.40 and MCNP5-1.60 transport codes. Two cluster systems situated at our Institute were used. Main purpose of this analyses was the determination of the bias which should be used in further simulations.  相似文献   

11.
《Annals of Nuclear Energy》2005,32(9):925-948
A set of multi-group eigenvalue (Keff) benchmark problems in three-dimensional homogenised reactor core configurations have been solved using the deterministic finite element transport theory code EVENT and the Monte Carlo code MCNP4C. The principal aim of this work is to qualify numerical methods and algorithms implemented in EVENT. The benchmark problems were compiled and published by the Nuclear Data Agency (OECD/NEACRP) and represent three-dimensional realistic reactor cores which provide a framework in which computer codes employing different numerical methods can be tested. This is an important step that ought to be taken (in our view) before any code system can be confidently applied to sensitive problems in nuclear criticality and reactor core calculations. This paper presents EVENT diffusion theory (P1) approximation to the neutron transport equation and spherical harmonics transport theory solutions (P3–P9) to three benchmark problems with comparison against the widely used and accepted Monte Carlo code MCNP4C. In most cases, discrete ordinates transport theory (SN) solutions which are already available and published have also been presented. The effective multiplication factors (Keff) obtained from transport theory EVENT calculations using an adequate spatial mesh and spherical harmonics approximation to represent the angular flux for all benchmark problems have been estimated within 0.1% (100 pcm) of the MCNP4C predictions. All EVENT predictions were within the three standard deviation uncertainty of the MCNP4C predictions. Regionwise and pointwise multi-group neutron scalar fluxes have also been calculated using the EVENT code and compared against MCNP4C predictions with satisfactory agreements. As a result of this study, it is shown that multi-group reactor core/criticality problems can be accurately solved using the three-dimensional deterministic finite element spherical harmonics code EVENT.  相似文献   

12.
Complexity in PBMR – Pebble Bed Modular Reactor – design has brought nuclear engineers to use Monte-Carlo based nuclear codes to analyze it. In this work we tried to improve the ability of the MCNP4c code in the analysis of such reactors. The improvement was reached through the updating of the cross-section library. Our main goal was to implement a new multi-temperature ENDFVII based library into MCNP4c and study its effects on PBM reactor analysis through the benchmarking process.  相似文献   

13.
基于随机输运理论的中子动力学与热工水力的耦合可实现对不同程序的控制和数据传递。本工作研究基于单根燃料棒和3×3燃料棒束的MCNP5程序与CFD程序CFX的耦合。使用该耦合程序对先进球床高温反应堆(PB-AHTR)的堆芯进行计算,并与MCNP5与RELAP5-3D耦合程序的计算结果进行比较。由计算结果可见:在不同初始状态下,有效增殖因数经若干耦合计算后均趋于稳定,但伴随一定波动。结果表明,中子动力学与CFD的瞬态耦合是可行的,但其计算精确度和实用性需进一步验证研究。  相似文献   

14.
本文基于Cinder90燃耗数据库开发了燃耗求解程序MCRAM,并耦合MCNP程序对重要的锕系核素和裂变产物核素的反应截面进行了修正。以OECD/NEA乏燃料成分基准数据库中的Takahama-3压水堆燃料组件为基准题,对MCRAM程序的计算结果进行了验证,并与其他程序的计算结果进行了比较。结果表明,MCRAM程序对重要裂变产物和主要锕系核素的计算结果相对偏差小于5%,计算精度与ORIGEN2程序的相当。与此同时,同一例题的计算效率MCRAM较之MCNTRANS程序提高了近200倍。  相似文献   

15.
《Fusion Engineering and Design》2014,89(9-10):2174-2178
3D Monte Carlo transport codes are extensively used in neutronic analysis, especially in radiation protection and shielding analyses for fission and fusion reactors. TRIPOLI-4® is a Monte Carlo code developed by CEA. The aim of this paper is to show its capability to model a large-scale fusion reactor with complex neutron source and geometry. A benchmark between MCNP5 and TRIPOLI-4®, on the ITER A-lite model was carried out; neutron flux, nuclear heating in the blankets and tritium production rate in the European TBMs were evaluated and compared. The methodology to build the TRIPOLI-4® A-lite model is based on MCAM and the MCNP A-lite model. Simplified TBMs, from KIT, were integrated in the equatorial-port. A good agreement between MCNP and TRIPOLI-4® is shown; discrepancies are mainly included in the statistical error.  相似文献   

16.
The deregulated utility environment and better utilization of fuel assemblies in nuclear power plants has allowed designers to burn fuel assemblies to maximum allowable exposures. Any uncertainties, associated with the technical approach and numerical methods used to perform pin exposure calculations may cause either peak power exposure to exceed the Nuclear Regulatory Commission (NRC) exposure limit or lead to excessive conservatism and thus inefficient fuel utilization. In this work, a Monte Carlo based coupled depletion code (MCNP5/ORIGEN-S) is utilized to provide reference solutions in order to assess the accuracy of pin power and pin exposure reconstruction methods in the current commercial and licensed three-dimensional (3D) nodal Light Water Reactor (LWR) core design codes. The developed at the Pennsylvania State University (PSU) MCNP5/ORIGEN-S coupled depletion code system was validated using measured data from the PSU TRIGA research reactor critical experiments.  相似文献   

17.
The vectorization method was studied to achieve a high efficiency for the precise physics model used in the continuous energy Monte Carlo method. The collision analysis task was reconstructed on the basis of the event based algorithm, and the stack-driven zone-selection method was applied to the vectorization of random walk simulation. These methods were installed into the vectorized continuous energy MVP code for general purpose uses. Performance of the present method was evaluated by comparison with conventional scalar codes VIM and MCNP for two typical problems. The MVP code achieved a vectorization ratio of more than 95% and a computation speed faster by a factor of 8–22 on the FACOM VP-2600 vector supercomputer compared with the conventional scalar codes.  相似文献   

18.
In the advanced reactor, the fuel assembly or core with unstructured geometry is frequently used and for calculating its fuel assembly, the transmission probability method (TPM) has been used widely. However, the rectangle or hexagon meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though finite element method and Monte Carlo method is very good at solving unstructured geometry problem, they are very time consuming. So we developed the TPM code based on the triangle meshes. The TPM code based on the triangle meshes was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of comparison were consistent with each other. The TPM with triangle meshes would thus be expected to be able to apply to the two-dimensional arbitrary fuel assembly.  相似文献   

19.
The authors have been developing specific purpose Monte Carlo simulation programs for the suite of nuclear well logging devices that are in present use. To date codes called McPNL and McDNL have been developed and tested for the pulsed neutron lifetime and dual-spaced or compensated neutron porosity logs, respectively. Another code called McLDL is presently under development for the gamma-ray litho-density logs. These codes are discussed and results are presented as to their construction, advantages, and uses as compared to the general purpose codes MCNP and McBEND. Computational benchmark problems are specified for all three logs for future quantitative comparisons.  相似文献   

20.
The error arising in the change of the 235U and 239Pu concentrations as a result of the statistical error in the microscopic cross sections during a computational fuel-run simulation with the MCU and MCNP programs is investigated. The analysis is limited to the thermal neutron spectrum and low fuel burnup. A simplified model simulating a fuel-run calculation using MCU and MCNP type statistical programs is constructed. This model is used to analyze for a commercial uranium-graphite reactor the effect of the rate of recalculation of and the statistical error in the microscopic cross sections over a run on the calculation of the 235U and 239Pu concentrations. The results show that the influence of the statistical error on the computed 235U and 239Pu concentration is negligible even with 105 neutron histories in the statistical computational sample over a run.__________Translated from Atomnaya Énergiya, Vol. 98, No. 2, pp. 91–97, February, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号