首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用射频磁控溅射制备了本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜,研究了Zn掺杂和热退火对薄膜结构和光学性质的影响。与本征β-Ga2O3薄膜相比, Zn掺杂β-Ga2O3薄膜的微结构、光学透过、光学吸收、光学带隙以及光致发光等都发生了显著的变化。退火后的β-Ga2O3薄膜为多晶结构,Zn掺杂以后β-Ga2O3薄膜的光学带隙变窄,薄膜的结晶性变差,薄膜的光学透过降低,薄膜的紫外、蓝光及绿光发射加强。  相似文献   

2.
采用射频磁控溅射法在石英衬底上制备了氧化镓(Ga2O3)薄膜.利用X射线衍射仪和紫外-可见-红外分光光度计分别对Ga2O3薄膜的晶体结构和光学带隙进行了表征,并在室温下测量了 Ga2O3薄膜的光致发光(PL)谱.结果表明:制备的Ga2O3薄膜呈非晶态.吸收边随着溅射气压的增加先蓝移后红移,光学带隙值范围为5.06~5.37 eV,溅射气压为1 Pa时,制备的Ga2O3薄膜具有最大的光学带隙.在325 nm激光激发下,400 nm附近和525 nm附近处出现与缺陷能级相关的发光峰.  相似文献   

3.
溅射压强对ITO/Cu2O复合膜结构和光学性能的影响   总被引:1,自引:1,他引:0  
利用脉冲磁控溅射制备技术,以氧化铟锡(ITO)导电玻璃为基底,采用单质金属Cu 靶作为溅射靶,在O2和Ar的混合气氛下沉积了Cu2O薄膜。通过调控溅射压强,研 究了脉冲磁控溅射沉积法在不同溅 射压强下对Cu2O薄膜的物相结构、表面形貌及光学性能的影响。结果表明,在O2、Ar流 量比(O2/Ar)为20∶90的气 氛条件下,在2~3Pa的溅射压强范围内,可获得纯相的Cu2O薄膜;薄膜表面形貌依赖于 溅射压强,薄膜表面粗糙度的 均方根(RMS)值随溅射压强的增大而减小;在ITO上沉积Cu2O 薄膜后,薄膜的光学吸收边红移至780 nm, ITO/Cu2O复合膜的光谱吸收范围拓展至300~780 nm,复合膜的吸收强度随溅射压强的增 大而减小,光学带隙Eg 随溅射压强的增大而增大,Eg值为2.28~2.39eV。  相似文献   

4.
采用磁控溅射法,在预先沉积了Al2O3过渡层的玻璃衬底上制备了性能优良的AZO薄膜。借助XRD、AFM、四探针仪和分光光度计对AZO薄膜的结构、表面形貌以及电学和光学性质进行了表征,并研究了Al2O3过渡层厚度对AZO薄膜性能的影响。结果表明:Al2O3过渡层的添加对AZO薄膜的表面形貌有一定影响;AZO薄膜的结晶质量随着过渡层厚度的增加先上升后下降;AZO薄膜的电阻率因过渡层的添加而明显降低,特别是在AZO薄膜较薄时;在添加了1~3 nm厚的过渡层后,160 nm厚的AZO薄膜的电阻率下降了44%左右;AZO薄膜的可见光透射率和光学带隙基本不受过渡层影响。  相似文献   

5.
在不同氧分压下,用脉冲激光沉积法在c-蓝宝石衬底上制备了高质量β-Ga2O3?δ薄膜。通过X-射线衍射、远红外反射光谱、X-射线光电子能谱和紫外-可见-近红外透射光谱系统地研究了β-Ga2O3?δ薄膜的晶格结构、化学计量比和光学性质。X-射线衍射分析表明,所有沉积的薄膜以(-201)晶向方向生长。透射光谱显示薄膜在255 nm以上的紫外-可见-近红外波段具有80%以上的高透明度,同时在255 nm附近有一个陡峭的吸收边。此外,利用Tauc-Lorentz(TL)色散函数模型和Tauc公式,我们提取了β-Ga2O3?δ薄膜的光学常数和光学直接带隙。更进一步,我们通过理论计算解释了氧气分压对β-Ga2O3?δ薄膜光学性质的影响。  相似文献   

6.
采用热蒸发法技术沉积Ge34Ga2S64非晶薄膜,并对薄膜样品在375℃热处理2h。通过分光光度计、表面轮廓仪和显微拉曼光谱仪测试热处理前后薄膜样品的透过曲线、薄膜厚度和拉曼结构。利用薄膜干涉曲线的波峰和波谷计算了薄膜的厚度和折射率,并根据Swanepoel方法以及Tauc公式分别计算了薄膜折射率色散曲线和光学带隙等参数。结果表明,Ge34Ga2S64非晶薄膜经热处理后发生热致漂白效应,大分子团簇以及Ge-Ge、S-S同极错键含量明显减少,网络结构无序性降低,从而引起薄膜的光学吸收边蓝移、折射率降低、表面粗糙度(Ra)降低0.515nm和光学带隙增大0.118eV。  相似文献   

7.
用磁控溅射法在室温条件下制备了Al膜、Ga2O3膜及Ga2O3/Al/Ga2O3三层膜,对其光学和电学性能进行了表征。单层Al膜厚度大于7nm时,光学透射率在近紫外光区域大于可见光区域;Ga2O3膜在深紫外光区域(<300nm)透明,光学带隙4.96eV;Ga2O3/Al/Ga2O3三层膜透射率截止波长在245nm左右,随着顶层Ga2O3厚度增加,电导率减小,紫外光透射率峰位、吸收边、截止波长红移,透射率峰值先稍微增加,然后逐渐降低。顶层Ga2O3厚度为34nm时,Ga2O3/Al/Ga2O3三层膜在275nm处的透射率达70%,电导率为3346S.cm–1。  相似文献   

8.
实验采用射频(RF)磁控溅射法在高射频功率(550 W)下制备了Zn0.9Li0.1O薄膜,探讨了薄膜的光学性能,并与低溅射功率制备的薄膜性能进行了比较。结果表明,高功率下溅射的薄膜晶粒均匀细小,表面平整致密,在可见光波长范围内,透过率达80%。该薄膜的光学带隙约3.29 eV,明显低于低功率溅射的薄膜(3.44 eV)。其室温光致发光(PL)谱结果显示,最强峰是由Li杂质能级引起的399 nm峰,热处理后,370 nm的带间发光峰增强,而低功率制备的薄膜其PL谱与纯ZnO材料的特征谱相似。  相似文献   

9.
闫金良  曲崇 《半导体学报》2016,37(4):042002-7
研究F掺杂浓度对β-Ga2O3的几何结构、电子结构和光学性质的影响。F掺杂β-Ga2O3在富Ga条件下容易制备,随F掺杂浓度的提高,F掺杂β-Ga2O3的稳定性增强,结构参数变大。F掺杂β-Ga2O3是一种n型半导体材料,导带中的占据态由Ga 4s、Ga 4p和O 2p态组成,占据态随F掺杂浓度的增加而增加。随F掺杂浓度的提高,F掺杂β-Ga2O3的禁带宽度收缩,占据态展宽。F掺杂β-Ga2O3的吸收谱呈现陡峭的带边吸收和宽的吸收带。随F掺杂浓度的提高,F掺杂β-Ga2O3的带边吸收蓝移,宽带吸收的强度增强。宽带吸收是由导带中的占据态向空态带内跃迁产生的。  相似文献   

10.
赵银女  闫金良 《半导体学报》2015,36(8):082004-5
用第一性原理计算了Sn掺杂 β-Ga2O3、F掺杂β-Ga2O3和Sn/F共掺杂 β-Ga2O3的形成能、电子结构和光学性能。用LDA方法计算的本征β-Ga2O3和Sn掺杂 β-Ga2O3的晶格常数和电子结构与实验值吻合。形成能计算表明Sn掺杂 β-Ga2O3、F掺杂β-Ga2O3和Sn/F共掺杂 β-Ga2O3在富氧条件下比在富镓条件下容易形成。Sn掺杂 β-Ga2O3、F掺杂β-Ga2O3和Sn/F共掺杂 β-Ga2O3显示n型半导体特性。Sn/F共掺杂 β-Ga2O3具有最小的电子有效质量和最大的相对电子数,具有潜在的良好导电性。Sn/F共掺杂 β-Ga2O3在可见光区域显示强的光吸收。  相似文献   

11.
RF磁控溅射制备N掺杂Cu2O薄膜及光学特性研究   总被引:1,自引:3,他引:1  
利用射频(RF)磁控溅射沉积技术,采用Cu2O陶瓷靶作为溅射靶,在N2和Ar气的混合气氛下制备了Cu2O薄膜。通过改变衬底温度和N2流量,研究了RF磁控溅射沉积法对Cu2O薄膜的生长行为、物相结构、表面形貌及光学性能的影响。结果表明,衬底温度为300℃时,低N2流量(12sccm)下沉积的薄膜结构为Cu2O和CuO的混合相,N2流量增大至12sccm时薄膜结构转变为单相的Cu2O;不同N2流量下制备的薄膜均呈现三维的结核生长模式,其表面粗糙度的均方根(RMS)值依赖于N2流量,低N2流量下薄膜表面粗糙度的RMS值随N2流量的增大而增大,高N2流量下,RMS值随N2流量的增大而减小,并在一定N2流量范围内趋于稳定;不同N2流量下制备的薄膜均在475nm附近出现发光峰,峰的相对强度随N2流量的增加而减弱,峰位随N2流量的增加出现蓝移,薄膜的光学带隙Eg约为(2.61±0.03)eV。  相似文献   

12.
利用射频磁控溅射在c面单晶蓝宝石(Al2O3)衬底上制备Ga2O3薄膜,研究了溅射过程中通入氧气与氩气的体积流量比对经过异位高温后退火处理得到的β-Ga2O3薄膜特性的影响。利用X射线衍射仪(XRD)和原子力显微镜(AFM)对薄膜进行表征,结果表明β-Ga2O3薄膜沿着■晶面择优生长,具备较好的单一取向性。在氧氩体积流量比约为1∶20时,薄膜的结晶性能相对较好、表面晶粒分布较均匀、均方根粗糙度较小、晶粒尺寸较大。此外,吸收光谱表征结果表明,不同氧氩体积流量比下制备得到的β-Ga2O3薄膜的带隙变化范围为4.53~4.64 eV,在较低氧氩体积流量比下制备的β-Ga2O3薄膜表现出较优的光学性质,在波长200~300 nm内具有较好的吸收特性,表现出良好的深紫外光学特性。  相似文献   

13.
采用LBL(layer-by-layer)法制备了Cu2SnS3薄膜.即首先采用电化学方法在SnO2衬底上制备SnS薄膜,然后又在其上用化学沉积法制备CuS薄膜,最后进行退火处理得到厚度约为960 nm的Cu2SnS3薄膜.探讨了薄膜的制备机理、生长速度、结构和光学特性.制备的薄膜为多晶(Cu2SnS3)72z(三斜或假单斜晶系)结构,其直接光学带隙约为1.05 eV.  相似文献   

14.
利用真空热蒸发在石英基片上制备了不同厚度的氧化钒薄膜, 研究厚度对薄膜的结构、形貌和光学特性的影响。薄膜的结构由X射线衍射(XRD)仪和拉曼(Raman)光谱仪测得, 表面形貌用原子力显微镜(AFM)观测。利用分光光度计测量薄膜的光学透射率, 并且采用Forouhi-Bloomer模型与修正的德鲁德(Drude)自由电子模型相结合的方法拟合透射率来确定薄膜的折射率、消光系数和带隙。结果表明, 热蒸发的氧化钒薄膜呈非晶态, 薄膜的主要成分为五氧化二钒, 且含有少量的二氧化钒。薄膜表面的颗粒粘结在一起, 随着薄膜厚度的增加, 薄膜表面粗糙度以及颗粒尺寸变小, 膜层表面平整度越来越好, 颗粒之间的空隙变小, 导致折射率随膜厚的增加而增大, 消光系数减小。另外, 随着薄膜厚度从200 nm增加到450 nm, 光学带隙从2.67 eV减小到2.45 eV。  相似文献   

15.
通过磁控反应溅射,在玻璃基底上制备了不同溅射温度下的氧化钛薄膜.通过对其光电性能的分析测试,探讨了溅射温度对氧化钛薄膜性能的影响.实验表明:低温溅射下,薄膜表面颗粒较小,结构较为疏松,高温溅射下,薄膜颗粒较大,薄膜表面颗粒出现团聚现象;随着溅射温度的升高,溅射速率减小;薄膜方阻减小,载流子浓度增大;溅射温度越高,薄膜在紫外可见光波段内透射越弱,光学带隙越小.  相似文献   

16.
采用磁控溅射法,选用LaNi O3作为缓冲层,在硅基片上制备出了0.74Pb(Mg1/3Nb2/3)O3-0.26PbTiO3弛豫铁电薄膜.研究了沉积温度对薄膜的微结构和光学性能的影响.其中,沉积温度为500oC时制备的薄膜,不仅具有纯的钙钛矿结构,高度(110)择优取向、致密、无裂纹的形貌、而且具有最大的剩余极化,大小为17.2μC/cm2.使用柯西模型进行拟合反射谱,分析得到薄膜的折射率和消光系数.在波长为633 nm时,500oC沉积的薄膜的折射率大小为2.41.另外,薄膜的光学带隙在2.97~3.22 eV范围内.并初步讨论了这些薄膜的光学性能的差异.  相似文献   

17.
半导体材料Ga2O3是继宽禁带半导体材料SiC/GaN之后新兴的直接带隙超宽禁带氧化物半导体,其禁带宽度为4.5~4.9eV,击穿电场强度高达8MV/cm(是SiC及GaN的2倍以上),物理化学稳定性高,在发展下一代电力电子学和固态微波功率电子学领域具有较大的潜力。自2012年第一只Ga2O3场效应晶体管诞生以来,Ga2O3微电子学的研究呈现快速发展态势。本文综述了β-Ga2O3单晶材料和外延生长技术以及β-Ga2O3二极管和β-Ga2O3场效应管等方面的研究进展,介绍了β-Ga2O3材料和器件的新工艺、新器件结构以及性能测试结果,分析了相关技术难点和创新思路,展望了Ga2O3微电子学未来的发展趋势。  相似文献   

18.
对Sb2Te3薄膜的结构、线性光学及非线性吸收性质的Ti掺杂影响进行了系统性探究。利用磁控溅射和高温退火手段制备了不同Ti掺杂浓度的晶态Sb2Te3薄膜。X射线光电子能谱分析显示Sb2Te3薄膜中的Ti元素以Ti4+化学态以TiTe2的形式存在。线性光学性质结果表明,在保持非线性器件中宽工作波长特性的同时,Ti掺杂可以提高Sb2Te3薄膜的透射率,并降低光学带隙从1.32 eV至1.25 eV,根据Burstein-Moss理论,这取决于载流子的减少。利用自主搭建的开孔Z扫描系统,测试了薄膜样品在132 GW/cm2强度下800 nm飞秒激光激发的非线性吸收性质,结果显示的Ti掺杂引起的饱和吸收可调谐行为可归因于光学带隙减小与晶化抑制的竞争效应。此外,Ti掺杂将Sb2Te3薄膜的激光损伤阈值从188.6 GW/cm2提高到了265.5 GW/cm2。总而言之,Ti掺杂Sb2Te3薄膜在非线性光学器件领域具有广泛的应用前景。  相似文献   

19.
采用多源磁控溅射技术在玻璃衬底上制备了Ga、Al共掺杂氧化锌(GAZO)/Ag/GAZO透明导电薄膜。对比实验表明,通入O2溅射Ag能够提高薄膜在600~800 nm波段的光透射率。进一步优化后,发现在O2流量为1.0 sccm的条件下,12 nm的Ag获得连续结构,提升了GAZO/Ag/GAZO薄膜的光电性能。在空气中经150℃退火处理1 h,GAZO/Ag/GAZO薄膜的光电性能和结构性能都得到提升。退火后薄膜方块电阻为8.99Ω/sq,380~780 nm可见光波段平均透射率为98.17%,品质因子高达2260Ω-1。该GAZO/Ag/GAZO透明导电薄膜显示出优异的光电性能,有望替代铟锡氧化物薄膜用于光电器件领域。  相似文献   

20.
使用数值模拟的方法,对氢化物气相外延(HVPE)生长α-Ga2O3材料的温度和反应源气流进行了优化.区别于传统的在反应腔内HCl或Cl2携带Ga源的结构,使用了外置Ga源的方法,可以较准确地调整GaCl/GaCl3的组分占比、摩尔分数和浓度.另外,使用分子模拟软件Gaussian计算得到GaCl3与O2反应的活化能,通过实验数据拟合得到α-Ga2O3相变为β-Ga2O3的反应活化能.在此基础上,对生长温度、GaCl/GaCl3的组分占比进行了模拟,并给出了 α-Ga2O3的优化生长条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号