共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical layout design is, for offshore wind farms (OWF), a complex problem that has a far‐reaching impact on both plant cost and reliability. A full optimization of the layout, as opposed to just selecting the most favorable pre‐established configuration, is required in order to capture all the potential efficiencies. However, classical optimization methods such as mixed‐integer programming (MIP) might not be applicable to large OWFs. This paper describes a novel combination of ordinal optimization (OO) and MIP that is able to deal with large problems in reduced computation times with a statistical optimality guarantee. The algorithm is applied to a real case study taken from Barrow Offshore Wind Farm in the East Irish Sea. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
3.
考虑实际工程需求,开发一种几何约束条件下海上风电场智能布局优化方法。该方法使用Gaussian模型计算风力机尾流区的速度亏损,并以最大化风电场年发电量为目标采用差分进化算法进行优化,可满足海上风电场布局时的各类几何约束。利用该方法分别在3行、4行、7行几何约束下对中国某海上风电场的风力机排布方式进行优化。结果显示,相比于原始布局方案,在考虑海缆铺设成本增加的情况下布局优化方案可提升风电场年发电量2.13%~2.64%。进一步分析表明,布局优化过程中可行解数量的设置需综合考虑智能算法寻优难度的影响。 相似文献
4.
This paper investigates the correlation between the frequency components of the wind speed Power Spectral Density. The results extend an already existing power fluctuation model that can simulate power fluctuations of wind power on areas up to several kilometers and for time scales up to a couple of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated into an aggregated model which is used for estimating some electrical parameters as power ramps and reserves requirements, showing a quite good agreement between simulations and measurement. The comparison with measurements generally show that the inclusion of the correlation between low frequency components is an improvement, but the effect is relatively small. The effect of including the low frequency components in the model is much more significant. Therefore, that aggregated model is useful in the power system planning and operation, e.g. regarding load following and regulation. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Wind energy will be indispensable as Europe advances towards a low carbon energy future. Offshore locations in the North and Baltic seas are expected to host large arrays of wind farms that plan to export formidable amounts of electricity to the continent. The design of such plants is an intricate task where the electrical layout plays a crucial role. This complexity calls for the use of advanced optimization tools to support investment and operation decisions. This paper reviews the main approaches already developed in the literature and discusses their implications. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
Wake losses inside a wind farm occur due to the aerodynamic interactions when a downwind turbine is in the wake of upwind turbines. The ability of floating offshore wind turbines (FOWTs) to relocate their positions in the horizontal plane introduces an opportunity to decrease the wake losses in a floating wind farm (FWF). Our goal is to use this ability to passively move the downwind FOWT out of the wake of upwind ones. Since the mooring system (MS) attached to a FOWT is responsible for its station keeping, the horizontal motions of the FOWT depend on the MS design. Hence, if we can design the MS to passively move the FOWT out of the wake, we can increase the FWF annual energy production (AEP). In this paper, we investigate if we can benefit from relocating FOWTs in a FWF and increase its AEP. In addition, we present a novel approach that considers the ability of a FOWT to relocate its position as a new degree of freedom (DoF) in the FWF layout design. This means we will have a self-adjusting wind farm layout where the FOWTs passively re-arrange themselves depending on the wind direction and the wind speed. Consequently, we will have a slightly different wind farm layout for every wind direction and every wind speed. To achieve this layout, we include the MS design as part of the FWF's layout design. In a self-adjusting FWF layout, each FOWT is attached to a customized MS design allowing it to relocate its position in the best way possible according to the wind direction, to increase the overall AEP of the wind farm. The results of one case study show that the novel approach can increase the FWF's AEP by 1.6% when compared with a current state of the art optimized floating wind farm layout. Finally, we implemented our method as an open-source python tool to be used and enhanced further within the wind energy community. 相似文献
7.
8.
针对海上风电场,综合功率提升和疲劳平衡分配的优化目标,提出一种以天为优化周期的优化策略.在电网高负荷时段,基于Jensen尾流模型,以轴向诱导因子为优化变量,风电场整场功率最大为目标,运用随机粒子群算法进行风功率利用提升优化控制;在电网低负荷时段,基于风电机组综合疲劳系数计算方法,以机组轴向诱导因子为优化变量,应用尾流... 相似文献
9.
10.
11.
德国海上风电VSC-HVDC技术分析 总被引:1,自引:0,他引:1
系统地总结和梳理了德国海上风电并网情况及发展特点,分析阐述了德国海上风电场群集中并网的技术特征和经验,比较分析了高压交流输电和VSC—HVDC技术在海上风电并网应用的优缺点。最后,结合德国经验和中国发展需要,提出了海上风电并网分析模型。 相似文献
12.
13.
14.
研究海上相邻风电场间的“尾流效应”对发电损失的影响。 利用海上风电场实际运行SCADA数据结合激光雷达同期实测测风数据,基于不同的风向扇区范围和风电场实际排布进行尾流效应场景分类,开展实际运行相邻风电场间(20D以上间距)的真实尾流电量损失分析工作。 结果表明:对于规则排布的海上大型风电场,基于实际运行SCADA数据,对各机组发电量进行归一化,可以较好地反映海上风能资源分布特征及各机组发电能力的差异;高度集中的单一扇区条件下,处于下风向的相邻风电场受上风向相邻场区的“尾流效应”影响明显,发电产能较自由流降幅明显;相邻风场间随着缓冲带距离的增加,下风向场区机组尾流电量衰减比随之降低,缓冲带需达到一定的距离,对于风速的恢复有明显的作用,发电产能才能够有所提升;本案例不同场景下,缓冲带距离在23D~44D之间,尾流损失电量降幅在27%~4%之间。 基于相邻风电场实际运行数据开展尾流分析可为后续海上大型风电基地规划设计和机组排布优化设计提供指导。 相似文献
15.
16.
This paper presents a data‐driven adaptive scheme to adjust the control settings of each wind turbine in a wind farm such that an increase in the total power production of the wind farm is achieved. This is carried out by taking into account the interaction between the turbines through wake effects. The optimization scheme is designed in such a way that it yields fast convergence so that it can adapt to changing wind conditions quickly. The scheme has a distributed architecture in which each wind turbine adapts its control settings through gradient‐based optimization, using information that it receives from neighbouring turbines. The novel control method is tested in a simulation of the Princess Amalia Wind Park. It is shown that the distributed gradient‐based approach performs the optimization in a more time‐efficient manner compared with an existing data‐driven wind farm power optimization method that uses a game theoretic approach. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
The North Sea is becoming increasingly attractive to wind energy developers and investors, with 38 wind farms belonging to five different countries and representing over€35 billion of assets. Concerns about offshore wind turbines being damaged by extreme windstorms pose a challenge to insurers, investors and regulators. Catastrophe modeling can adequately quantify the risk. In this study, a Monte Carlo simulation approach is used to assess the number of turbines that buckle using maximum wind speeds reaching each wind farm. Damage assessment is undertaken for each wind farm using a log‐logistic damage function and a left‐truncated Weibull distribution. The risk to offshore wind power in the North Sea is calculated using an exceedance probability (EP) curve for the portfolio of wind farms. The European Union Solvency II directive requires insurance companies to hold sufficient capital to guard against insolvency. The solvency capital requirement (SCR) is based on a value‐at‐risk measure calibrated to a 99.5% confidence level over a 1‐year time horizon. The SCR is estimated at €0.049 billion in the case of yawing turbines. Simulations are repeated for different climate change scenarios. If wind speeds grow by 5% and the frequency of storms increases by 40%, the SCR is seen to rise substantially to €0.264 billion. Relative to the total value of assets, the SCR is 0.14% compared with 0.08% for European property, confirming that these wind farm assets represent a relatively high risk. Furthermore, climate change could increase the relative SCR to levels as high as 0.75%. 相似文献
18.
Rebecca Barthelmie Gunner Larsen Sara Pryor Hans Jrgensen Hans Bergstrm Wolfgang Schlez Kostas Rados Bernhard Lange Per Vlund Sren Neckelmann Sren Mogensen Gerard Schepers Terry Hegberg Luuk Folkerts Mikael Magnusson 《风能》2004,7(3):225-245
While experience gained through the offshore wind energy projects currently operating is valuable, a major uncertainty in estimating power production lies in the prediction of the dynamic links between the atmosphere and wind turbines in offshore regimes. The objective of the ENDOW project was to evaluate, enhance and interface wake and boundary layer models for utilization offshore. The project resulted in a significant advance in the state of the art in both wake and marine boundary layer models, leading to improved prediction of wind speed and turbulence profiles within large offshore wind farms. Use of new databases from existing offshore wind farms and detailed wake profiles collected using sodar provided a unique opportunity to undertake the first comprehensive evaluation of wake models in the offshore environment. The results of wake model performance in different wind speed, stability and roughness conditions relative to observations provided criteria for their improvement. Mesoscale model simulations were used to evaluate the impact of thermal flows, roughness and topography on offshore wind speeds. The model hierarchy developed under ENDOW forms the basis of design tools for use by wind energy developers and turbine manufacturers to optimize power output from offshore wind farms through minimized wake effects and optimal grid connections. The design tools are being built onto existing regional‐scale models and wind farm design software which was developed with EU funding and is in use currently by wind energy developers. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
19.
Presently, less than a handful of papers have analysed the attitude towards offshore wind farms in a population living in an area with offshore wind farms. This leaves the experience-based attitude and demographic relations analysis relatively unexplored. The present studies aims at covering some of that seemingly uncharted territory by analysing attitudes from a sample of more than 1000 respondents. Applying an Ordered Probit Model, the results show general positive attitudes towards offshore wind farms and that the attitude formation seems to be a function of the gender, income, level of education, visit frequency and type of visit to the beach and the view to on-land turbines from the residence. Interestingly and perhaps the most interesting results, the observed relations between demographics and attitude are found to be dependent on the type and frequency of usage of the beach among the respondents. Attitudes towards offshore wind farms and demographic associations are thus found to be more evident in the case that respondents do use not the beach for walking on a relatively frequent basis but much weaker if the respondent use the beach on a frequent basis. However, these results are sensitive to the type of beach usage. This suggests that attitude formation towards offshore wind farms appear to be dependent on a combination of the type and frequency of use of the beach. To the author's knowledge these findings are novel, as such relation has not yet been identified in the literature. As such, the results shed light on a new angle in both the literature focusing on the opposition formation towards wind power projects in general and offshore wind farms in particular. 相似文献
20.
The protection of offshore wind farms (OWFs) against overvoltages, especially resonant overvoltage, is of paramount importance because of poor accessibility and high repair costs. In this paper, we study how switching overvoltages at the wind turbine transformer (WTT) medium voltage (MV) side can lead to high overvoltages on the low voltage (LV) side. The effect of overvoltage protective devices is analyzed. A detailed model of an OWF row is developed in electromagnetic transients program–alternative transients program (EMTP‐ATP), including interconnecting cables, WTT, surge arresters and resistive–capacitive filters. A parameterized black‐box WTT model is obtained from measurements and is used for investigating the transfer of resonant overvoltages from the MV to the LV side. The model is capable of shifting systematically the frequencies and adjusting the transformer input impedance. Simulation results show that wind turbine energization in an OWF can lead to overvoltages on the LV terminals. The rate of rise of overvoltages (du/dt) is in the range of 300–500 pu/µs. It is found that resistive–capacitive filters should be installed on both MV and LV terminals of WTTs to decrease both resonant overvoltages and du/dt, which is unachievable by surge arrester alone. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献