首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper proposes an indirect power control of doubly fed induction generator (DFIG) with the rotor connected to the electric grid through a back-to-back pulse width modulation (PWM) converter for variable speed wind power generation. Appropriate state space model of the DFIG is deduced. An original control strategy based on a variable structure control theory, also called sliding mode control, is applied to achieve the control of the active and reactive power exchanged between the stator of the DFIG and the grid. A proportional-integral-(PI) controller is used to keep the DC-link voltage constant for a back-to-back PWM converter. Simulations are conducted for validation of the digital controller operation using Matlab/Simulink software.  相似文献   

2.
通过研究已有的风力发电机空载并网控制的文献,指出定子磁链并网控制策略的不足之处,提出了电网电压并网控制策略,同时通过试验设计了并网前相位与相序的检测方法。通过仿真发现,在此控制策略下,双馈风力发电机定子侧的电压在频率、幅值、相位上接近电网电压,达到了无冲击并网的目的,验证了此控制策略的正确性和有效性,是空载并网方式的一种理想的控制策略。  相似文献   

3.
The objective of this paper is to propose a simple approach to solve the steady state of a wind turbine (WT) equipped with a doubly fed induction generator (DFIG), which can be used to initialize dynamic studies of the machine. The idea is to model the rotor‐side converter (RSC) as a constant current source connected to the rotor of the DFIG. The resulting equivalent circuit consists of a voltage source in series with a reactance, which makes it possible to obtain simple phasor expressions that can be used to obtain the Park components of the variables. The proposed method is compared with the traditional Newton–Raphson algorithm, showing that it is easier and faster to implement, as it makes use of the phasor expressions and it does not require an iterative process to obtain the final solution. Finally, the results of the proposed method are used to simulate a 2‐MW DFIG‐based WT under three‐phase faults, considering three different WT‐operating points. In these simulations, the idea of constant rotor current is extrapolated to the entire event. The simulated results show that both current at torque peaks are reduced. The analytical study and the simulations have been carried out in Matlab ?.  相似文献   

4.
This paper presents a simple and robust direct current control based predictive approach for rotor side converter (RSC) of the doubly fed induction generator (DFIG), which operates at a constant switching frequency and has a fast dynamic response. First, sector of required rotor voltage vector is predicted in this strategy, and according to this predicted sector, two active vectors and two zero vectors are elected in each switching period. Derivatives of rotor current in the synchronous frame are determined for each predicted voltage vector in every period. These derivatives are used to compute the duration of the vectors in such a way that the current error at the end of the switching period gets minimized. The accuracy of the proposed control strategy under variation of rotor speed is evaluated in Matlab/Simulink environment for a 2 MW DFIG. Moreover, the impact of parameter variations on the system is examined for this suggested technique. Furthermore, the dynamic response and stator current total harmonic distortion (THD) of proposed strategy is compared with traditional vector control (VC), direct power control (DPC) and predictive direct power control (PDPC) methods. Finally, the performance of the proposed method is evaluated under disturbance voltage. The results demonstrate that suggested control technique has the lowest stator current THD and operates perfectly near the synchronous speed and under grid voltage dip. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
E. G. Shehata 《风能》2014,17(7):1077-1091
In this paper, a direct power control (DPC) of a wind‐turbine‐driven doubly fed induction generators (DFIGs) under unbalanced network voltage conditions is studied. Variations of the stator output active, reactive and electromagnetic powers are fully deduced in the presence of negative sequence supply voltage. The rotor side converter is controlled on the basis of DPC to eliminate the electromagnetic torque oscillations at double supply frequency under unbalanced stator supply. The rotor voltage references estimation requires only simple calculations without any integral operation. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. The performance of the proposed and conventional DPC schemes is compared under the same operating conditions. Simulation results using Matlab/Simulink are carried out for a 1.5 MW DFIG wind generation system to show the validity of the proposed scheme during unbalanced voltage supply. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Xing Li  Yao Sun  Mei Su  Hui Wang 《风能》2014,17(2):317-336
This paper proposes a coordinated control scheme of a stand‐alone doubly fed induction generator (DFIG)‐based wind energy conversion system to improve the operation performance under unbalanced load conditions. To provide excellent voltage profile for load, a direct stator flux control scheme based on auto‐disturbance rejection control (ADRC) is applied, and less current sensors are required. Due to the virtues of ADRC, the controller has good disturbance rejection capability and is robust to parameter variation. In the case of unbalanced loads, the electromagnetic torque pulsations at double synchronous frequency will exist. To eliminate the undesired effect, the stator‐side converter (SSC) is used to provide the negative sequence current components for the unbalanced load. Usually, proportional integral controllers in a synchronous reference frame are used to control SSC. To simplify the algorithm, an improved proportional resonant (PR) control is proposed and used in the current loop without involving positive and negative sequence decomposition. The improved PR provides more degree of freedom which could be used to improve the performance. The effectiveness of the proposed control scheme has been validated by the simulation and experimental results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Due to several factors, wind energy becomes an essential type of electricity generation. The share of this type of energy in the network is becoming increasingly important. The objective of this work is to present the modeling and control strategy of a grid connected wind power generation scheme using a doubly fed induction generator (DFIG) driven by the rotor. This paper is to present the complete modeling and simulation of a wind turbine driven DFIG in the second mode of operating (the wind turbine pitch control is deactivated). It will introduce the vector control, which makes it possible to control independently the active and reactive power exchanged between the stator of the generator and the grid, based on vector control concept (with stator flux or voltage orientation) with classical PI controllers. Various simulation tests are conducted to observe the system behavior and evaluate the performance of the control for some optimization criteria (energy efficiency and the robustness of the control). It is also interesting to play on the quality of electric power by controlling the reactive power exchanged with the grid, which will facilitate making a local correction of power factor.  相似文献   

8.
This paper proposes a fractional‐order sliding mode control (FOSMC) based on feedback linearization (FL) technique to mitigate subsynchronous control interaction (SSCI) in doubly fed induction generator (DFIG)–based wind farms connected to series‐compensated transmission lines. A linearized form of the studied system is obtained with the use of FL, which leads to reduced system order and small computational burden. Then the FOSMC is designed for grid‐side converter (GSC) to stabilize SSCI and to provide a considerable robustness against external disturbances and parameter uncertainties. For FOSMC parameter tuning, genetic algorithm (GA) is performed through MATLAB/SIMULINK. Time‐domain simulation are carried out to evaluate the effectiveness of the FOSMC in mitigating SSCI at varied operating conditions, and the superior performance of the proposed control is demonstrated as compared with conventional vector control (VC), feedback linearization sliding mode control (FLSMC), high‐order sliding mode control (HOSMC).  相似文献   

9.
Kai Liao  Yao Wang  Zhengyou He 《风能》2018,21(3):151-162
This paper proposes a novel control strategy for doubly fed induction generator (DFIG)‐based wind energy conversion system to investigate the potential of enhancing the stability of wind energy transmission system, a synchronous generator weakly integrated to a power system with a DFIG‐based wind farm. The proposed approach uses state feedback to exactly linearize the nonlinear wind energy transmission system from control actions (active power and reactive power control order of DFIG) to selected outputs (power angle and voltage behind transient resistance of synchronous generator) at first. Then, on account of the linearized subsystem, the stability enhancement controller is designed based on linear quadratic regulator algorithm to contribute adequate damping characteristics to oscillations of the synchronous generator system under various operation points. The proposed control strategy successfully deals with the nonlinear behaviors exist from the inputs to outputs and improve the robustness with respect to the variation of system operation points. Furthermore, not only the rotor angle stability but also the voltage stability is enhanced by using the proposed control strategy. The simulation results carried on the studied system verify the effectiveness of the proposed control strategy of wind energy conversion system for system stability enhancement and the robustness against various system operation points.  相似文献   

10.
11.
This paper deals with robust direct power control of a grid-connected brushless doubly-fed induction generator(BDFIG). Using a nonlinear feedback linearization strategy, an attempt is made to improve the desired performances by controlling the generated stator active and reactive power in a linear and decoupled manner. Therefore, to achieve this objective, the Lyapunov approach is used associated with a sliding mode control to guarantee the global asymptotical stability. Thus, an optimal operation of the BDFIG in sub-synchronous operation is obtained as well as the stator power flows with the possibility of keeping stator power factor at a unity. The proposed method is tested with the Matlab/Simulink software. Simulation results illustrate the performances and the feasibility of the designed control.  相似文献   

12.
Among the several wind generation technologies, variable-speed wind turbines utilizing doubly fed induction generators (DFIG) are gaining momentum in the power industry. Increased penetration of these wind turbine generators displaces conventional synchronous generators which results in erosion of system frequency. With this assertion, the paper analyzes the dynamic participation of DFIG for frequency control of an interconnected two-area power system in restructured competitive electricity market. Frequency control support function responding proportionally to frequency deviation is proposed to take out the kinetic energy of wind turbine for improving the frequency response of the system. Impacts of varying wind penetration in the system and varying active power support from DFIG on frequency control have been investigated. The presence of thyristor controlled phase shifter (TCPS) in series with the tie-line and Superconducting Magnetic Energy Storage (SMES) at the terminal of one area in conjunction with dynamic active power support from DFIG results in optimal transient performance for PoolCo transactions. Integral gains of AGC loop and parameters of TCPS and SMES are optimized through craziness-based particle swarm optimization (CRPSO) in order to have optimal transient responses of area frequencies, tie-line power deviation and DFIG parameters.  相似文献   

13.
A doubly fed induction generator (DFIG) wind turbine depends on the control of the system at both generator and turbine levels, and the operation of the turbine is affected by the electrical characteristics of the generator and the aerodynamic characteristics of the turbine blades. This paper presents a DFIG energy extraction and control study by combining the two characteristics together in one integrative environment to examine various factors that are critical for an optimal DFIG system design. The generator characteristics are examined for different d‐q control conditions, and the extracted power characteristics of the turbine blades versus generator slip are presented. Then, the two characteristics are analyzed in a joint environment. An integrative study is conducted to examine a variety of parametric data simultaneously for DFIG maximum wind power extraction evaluation. A close‐loop transient simulation using SimPowerSystem is developed to validate the effectiveness of steady‐state results and to further investigate the wind energy extraction and speed control in a feedback control environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
由于风力双馈感应发电机(DFIG)内部阻尼转矩不足,导致DFIG接入电力系统时会降低系统阻尼,增加发生低频振荡的风险。文章提出了一种状态反馈解耦的控制方法,该方法依据闭环电力系统状态空间模型,将DFIG视为反馈控制器,对其传递函数阵进行状态反馈解耦,实现对来自同步发电机角速度、功角和阻抗偏差矢量一对一控制,进而对整个含DFIG电力系统数学模型进行降阶,同时调节功角耦合参数Cg1、角速度耦合参数Cg2以及阻抗耦合参数Cg3提高系统阻尼比,抑制公共连接点(PCC)电压幅值变化,提高了对低频振荡的抑制能力。最后,以风电接入四机两区域间降阶模型为例进行仿真,并与传统的状态观测器方法对比,仿真结果验证了所提方法对提高整个系统阻尼比和降低节点电压幅值抑制低频振荡的正确性和有效性。  相似文献   

15.
This paper presents a new robust and effective control strategy to mitigate symmetrical voltage dips in a grid‐connected doubly fed induction generator (DFIG) wind energy conversion system without any additional hardware in the system. The aim is to control the power transmitted to the grid so as to keep the electrical and mechanical quantities above their threshold protection values during a voltage dip transient. To achieve this, the references of the powers are readjusted to adapt the wind energy conversion system to the fault conditions. Robust control strategies, combining the merits of sliding mode theory and fuzzy logic, are then proposed in this paper. These controllers are derived from the dynamic model of the DFIG considering the variations in the stator flux generated by the voltage drop. This approach is found to yield better performance than other control design methods which assume the flux in the stator to remain constant in amplitude. This control scheme is compliant with the fault‐ride‐through grid codes which require the wind turbine generator to remain connected during voltage dips. A series of simulation scenarios are carried out on a 3‐MW wind turbine system to demonstrate the effectiveness of the proposed control schemes under voltage dips and parameter uncertainty conditions.  相似文献   

16.
双馈感应风力发电机的无源性控制方法研究   总被引:1,自引:0,他引:1  
基于双馈感应风力发电机Euler-Lagrange系统模型,设计了本质上是非线性反馈的无源性控制(PBC)策略,实现了负载转矩时变未知情形下磁链、转速的渐近跟踪控制.针对实际运行时风力发电机参数具有不确定性的问题,将PBC方法与自适应控制相结合,不仅可实现电机参数摄动时期望电流轨迹的准确跟踪,并可有效抑制由电阻、电感变化引起的跟踪误差.该方法从能量角度分析风力发电控制系统,确定不必抵消的"无功力",设计全局定义的控制律,具有形式简单、无奇异点、鲁棒性好等特点.基于dSPACE 的实验结果证明了该控制策略的有效性.  相似文献   

17.
着重研究双馈感应电机在电网电压不平衡条件下的不间断运行控制问题。利用对称分量法将三相不对称向量分解成正序、负序、零序分量给出的电网电压不平衡情况下的双馈感应电机数学模型,使用非线性自适应控制技术综合设计了电机转子电压的鲁棒自适应控制器。理论分析和仿真研究表明,即使在系统参数和外部干扰存在的情况下,设计的控制器仍可以保证:系统安全可靠的运行、最大风能跟踪、输出恒压恒频的电流以及电网电压不平衡情况下的电机不间断运行。  相似文献   

18.
Xiangyu Zhang  Yi Wang  Yuan Fu  Lie Xu 《风能》2016,19(2):313-328
This paper investigates virtual inertia control of doubly fed induction generator (DFIG)‐based wind turbines to provide dynamic frequency support in the event of sudden power change. The relationships among DFIGs' virtual inertia, rotor speed and network frequency variation are analysed, and a novel virtual inertia control strategy is proposed. The proposed control strategy shifts the maximum power point tracking (MPPT) curve to the virtual inertia control curves according to the frequency deviation so as to release the ‘hidden’ kinetic energy and provide dynamic frequency support to the grid. The calculation of the virtual inertia and its control curves are also presented. Compared with a PD regulator‐based inertial controller, the proposed virtual inertia control scheme not only provides fast inertial response in the event of sudden power change but also achieves a smoother recovery to the MPPT operation. A four‐machine system with 30% of wind penetration is simulated to validate the proposed control strategy. Simulation results show that DFIG‐based wind farms can provide rapid response to the frequency deviation using the proposed control strategy. Therefore, the dynamic frequency response of the power grid with high wind power penetration can be significantly improved. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.  相似文献   

20.
This paper presents a novel approach for reactive power compensation and active filtering capability of a variable speed wind energy conversion system (WECS) with doubly fed induction generator (DFIG), without any over‐rating. First, the WECS is capable of capturing maximum wind power under fluctuating wind speed. Second, depending on the available wind power value versus nominal WECS power, power quality can be improved by compensating the reactive power and the grid harmonic currents, without any system over‐rating. The proposed rotor side converter (RSC) control manages the WECS function's priorities, between main active power generation and power quality management. To ensure high filtering performances, we used an improved harmonic isolator in the time domain, based on a selective pass band filter (SPBF) developed in our laboratory. Moreover, we took advantage of the high amplification effect of the rotor side‐controlled DFIG to compensate harmonic currents. Consequently, no over‐rating is necessary for the proposed additional active filtering capability. Simulation results for a 2 MW WECS with DFIG confirm the effectiveness and the performances of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号