首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文系统研究了梳形共聚物分散剂羧基和聚醚侧链比例对水泥浆流变和分散性能的影响。结果表明:随共聚物主链中羧酸基团比例的提高,分散剂在水泥颗粒界面上吸附作用增强,分散性能提高,黏度下降,流变性能改善。但当羧基比例超过一定范围时,吸附能力反而下降,导致分散性能下降。同时,所有添加梳形共聚物的水泥浆体流动曲线方程都符合H—B方程,且具有良好的相关性。  相似文献   

2.
选用2种不同类型的超长聚醚侧链来合成梳形聚羧酸共聚物,并作为水泥体系的分散剂。通过水泥浆体分散、水化行为和强度发展的试验结果表明,超长侧链梳形聚羧酸共聚物比普通梳形聚羧酸共聚物具有更显著加速水泥水化、提高水泥基材料强度的作用。对比2种类型的超长侧链聚羧酸,酯型超长侧链梳形聚羧酸减水剂(PCA-COO)具有更好的早强效果,而醚型超长聚醚侧链梳形聚羧酸减水剂(PCA-O)具有更好的分散作用。  相似文献   

3.
使用不饱和醇经过阴离子开环聚合加成环氧乙烷(EO)制得分子量较高的聚醚大单体,并进一步合成出超长侧链型梳形聚羧酸减水剂.考察了该减水剂对水泥浆体分散和早期水化的影响,结果发现,相比传统酯化法制得的超长侧链型梳形聚羧酸减水剂,合成的超长侧链型聚羧酸减水剂具有更好的分散和分散保持性能,且早强性能不降低,合成过程更简单、更环保.  相似文献   

4.
5.
合成了一系列含有不同阴/阳离子基团摩尔比的两性梳形共聚物,研究了其对水泥浆体分散、分散保持、吸附和水泥早期水化的影响规律,并初步探讨了其作用机理.结果表明:主链中适当引入阳离子基团可改善水泥浆体的分散性能,进一步提高阳离子基团含量,吸附量增大,但水泥浆体的分散性能下降;共聚物分散保持性能随主链中阳离子基团含量增加而增强,其分散保持率和溶液中共聚物浓度呈负相关.两性梳形共聚物优异的分散和分散保持性能受吸附位置、吸附构象和早期水化的共同影响,且主链中阴/阳离子基团摩尔比存在一个最佳平衡值.  相似文献   

6.
聚羧酸减水剂侧链结构对水泥水化影响规律研究   总被引:3,自引:2,他引:1  
合成一系列不同侧链结构的聚羧酸减水剂KH,通过测试掺KH水泥净浆的流动度、凝结时间、化学收缩、电阻率及水泥砂浆3 d、7 d、28 d的抗压强度,讨论KH侧链结构对水泥初始性能和水化产物的影响规律.试验结果表明,当n(MAAMPEA):n(MAA)=1:3时,随着侧链长度的增长,KH对水泥颗粒分散性增大,分散保持性降低:水泥水化初期,KH抑制了C3A和C3S的水化,且随着侧链长度的增长,抑制作用依次减弱.  相似文献   

7.
通过自由基聚合的方法合成了相同阳离子含量、侧链密度,侧链聚合度为22~176的一系列醚型两性聚羧酸系减水剂(Amphoteric Polycarboxylate Superplasticizers,APC),以及侧链聚合度为112的酯键桥接APC。通过测试不同APC在水泥浆体中的吸附特性,及其对水泥浆体Zeta电位、流动度、早期强度、水化放热速率等的影响规律,研究了APC侧链结构对水泥浆体早期性能的影响。结果表明:不同结构APC对水泥浆体Zeta电位的改变均较小。随着侧链长度的增加,APC在水泥浆体中的吸附量先增加后减小。酯型APC的吸附能力较醚型的差。侧链较长且具有酯键桥接基团的APC均能够促进水泥水化过程,从而提高硬化水泥浆体的早期强度。  相似文献   

8.
按照分子设计的原理,通过接枝聚合反应制备了一系列具有不同侧链长度的梳型共聚物.研究了不同侧链长度的梳型共聚物对水泥/粉煤灰、水泥/硅灰以及水泥/偏高岭土体系的流变学性能及力学性能的影响.研究结果表明:侧链的长度和排列可以在一定程度上影响水泥及水泥/矿物掺合料的流变学性能和力学性能.但在各种体系中,其影响规律各不相同.与纯水泥体系相比,掺加适量的粉煤灰,可以明显提高水泥浆体的流变学性能,改善其泌水倾向,但其力学性能会明显降低;与硅灰相比,偏离岭土可以在基本不降低水泥浆体流动性的情况下,提高其力学性能.  相似文献   

9.
为了解决丁苯共聚物/水泥复合胶凝材料凝结硬化慢的问题,将沸石作为调凝材料,讨论其对复合胶凝材料凝结时间和早期强度的影响,并从水化放热速率和水化产物的角度分析沸石调节凝结硬化的机理.结果表明:沸石能够加速丁苯共聚物/水泥复合胶凝材料的水化,通过促进C_3A和C_3S的水化,缩短复合胶凝材料的水化诱导期,提高加速期最大放热速率,促进AFt和Ca(OH)_2的生成,从而加速复合胶凝材料的凝结硬化,缩短凝结时间,提高早期强度.  相似文献   

10.
陈红岩 《山东建材》2007,28(2):16-19
研究了木质素磺酸盐(LS)、萘系(FDN)及聚羧酸系(PC)三类混凝土减水剂,对水泥浆体水化性能及孔结构的影响.三种减水剂不同程度地延缓水泥早期水化,而对后期水化放热速率及产物均无影响.测试养护28 d、90 d的硬化水泥浆体中的孔隙率,不同减水剂对浆体孔径分布和孔隙率影响也不同,孔径小于0.1μm的孔隙率:PC远大于FDN和LS;孔径大等于0.1μm的孔隙率:LS>FDN>PC.减水剂对水泥浆体孔结构影响与掺减水剂的水泥浆体的絮凝结构有关,正是由于聚羧酸系减水剂对水泥的强分散能力,使得水泥遇水后形成大量体积较小的絮凝结构.  相似文献   

11.
通过凝结时间、早期抗压强度、水化热、水化产物形貌等研究了液体速凝剂对水泥早期水化反应历程的影响.结果表明,使用液体速凝剂的水泥浆体在水化的初始阶段形成了大量的水化铝酸钙晶体及针棒状的钙矾石,从而促进了水泥浆体的凝结.液体速凝剂增加了水泥早期产物中铝酸盐与硫酸盐的比例,加快了钙矾石(AFt)转化为单硫型硫铝酸钙(AFm)...  相似文献   

12.
设计不同的侧链长度、酸醚比和分子量制备了系列聚羧酸减水剂样品,采用GPC方法测试了系列样品的分子量和聚醚转化率.通过砂浆和混凝土性能评价试验表征了聚合物的分散性能和力学性能,用微量热仪监测了水泥水化18h内的水化放热趋势.结果 表明,聚羧酸分子中聚醚侧链长度、酸醚比和分子量均能明显影响砂浆的早期强度,分子结构综合影响早...  相似文献   

13.
为了研究石灰石粉对磷酸镁胶结材料(MPC)浆体性能的影响,测试了含石灰石粉MPC浆体的凝结时间、抗压强度、收缩变形和水化温度,分析了含石灰石粉MPC浆体的物相组成和微观形貌.结果表明:掺加适量石灰石粉可明显提高MPC浆体的抗压强度并改善其收缩变形.适量石灰石粉掺加后,MPC浆体早期水化程度显著增加,MPC浆体中主要水化产物MgKPO4·6H2O的结晶程度、生成量和生成比例明显提高,晶体形貌和大小发生了变化,MPC硬化体结构更加致密.  相似文献   

14.
陈达  廖迎娣  庄宁  黄辉 《施工技术》2012,41(4):84-86
水泥土搅拌法是加固软土地基的常用方法,固化剂水泥的品种对于不同土质特点有着重要的影响。基于我国东南沿海淤泥土特点,通过室内配合比试验、腐蚀试验和力学分析,研究了4种常用水泥为固化剂情况下水泥土的力学特性和耐久性能,提出了适用于研究土质的水泥品种选用建议,对于提高水泥土耐久性与质量控制水平有重要意义。  相似文献   

15.
高钙粉煤灰对水泥浆体结构与性能的影响   总被引:4,自引:0,他引:4  
主要研究了高钙粉煤灰对水泥浆体流动性和抗压强度的影响,并从孔分布、孔总体积、总孔比表面积和平均孔半径等参数来分析高钙粉煤灰对浆体孔结构的影响.结果表明:在等水灰比下,高钙粉煤灰的掺入将改善浆体的流动性,提高总孔体积和降低抗压强度;然而,随着龄期增长,浆体平均孔半径显著降低,抗压强度降得更小;90d龄期时,掺20%~40%质量分数高钙粉煤灰水泥浆体的抗压强度已基本与基准水泥浆体相同.  相似文献   

16.
从讨论小体积砼水化热及外加剂的特性入手 ,提出适时利用砼水化热 ,保证砼终凝后利用微量热能来提高商板的早强和防止断裂。  相似文献   

17.
高贝利特水泥(HBC)的性能分析   总被引:3,自引:0,他引:3  
通过对高贝利特水泥(HBC),硅酸盐水泥(PC),中热水泥(MHC)的性能对比试验,结合机理探讨,确认了HBC水泥具有节能,环保,混凝土流动性好,水化热低,后期强度高等许多优越性,适于在低热高性能大坝混凝土中开发应用。  相似文献   

18.
为研究海水浸泡养护对磷酸钾镁水泥(MKPC)浆体微观结构和性能的影响,测试了不同养护条件下MKPC浆体试件的抗压强度和干燥收缩率,分析了其物相组成和微观结构.结果表明:在海水浸泡环境下,如果MKPC浆体试件已凝结且具有一定的初始结构强度,其主要水化产物MgKPO_4·6H_2O(MKP)在呈弱碱性的海水环境下溶解度低、水解现象减轻;海水的渗入使MKPC浆体试件的水化反应得以持续进行,水化反应生成较多的MKP,在弱碱性海水环境下,MKP更易结晶,生成的MKP晶体结晶程度高、缺陷少,后续生成的MKP晶体不断填充MKPC硬化体的孔隙,使硬化体结构趋于致密;自然养护3d后浸入海水养护的MKPC试件有较高的抗压强度和较低的干燥收缩率,其28,60d抗压强度较全程自然养护的MKPC试件分别提高13%和5%,而其60d干燥收缩率仅为全程自然养护MKPC试件的12%,为28d后浸入海水养护MKPC试件的23%.  相似文献   

19.
依据现行标准,对不同纤维掺量的改性纤维水泥混凝土试件进行了早期收缩开裂试验.结果表明,纤维的加入可缓解和抑制水泥混凝土试件早期塑性收缩裂缝的产生和发展,减少并细化裂缝,且随纤维掺量的增加,这种效果更加明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号