共查询到19条相似文献,搜索用时 78 毫秒
1.
基于压缩感知的分布式语音压缩与重构 总被引:4,自引:3,他引:4
本文首先阐述了压缩感知(CS)的理论框架,然后分析了语音信号的特点--短时平稳性、离散余弦(DCT)基下的稀疏性,最后提出了基于CS理论的分布式语音压缩重构的框架.基于此框架采用基追踪(BP)和正交匹配追踪(OMP)算法对已压缩的语音信号进行重构,得出结论:每帧语音信号选取的帧长的大小,基于CS理论压缩得到的观测数的多少,都对重构性能有影响. 相似文献
2.
3.
在小波域多尺度压缩感知框架下,被完整保留的低频系数存在着许多可利用的图像信息。本文在分析了不同尺度之间、以及同一尺度之内的系数块存在能量差异的基础上,提出了利用边缘信息的多尺度分块压缩感知自适应采样方法(EAS)。该方法首先利用低频系数提取出边缘信息,然后将边缘信息分块,加权计算每个块的边缘信息度,根据边缘信息度判断每个系数块的能量大小,将其转换成每个子块的自适应采样率,从而实现多尺度分块压缩感知的自适应采样。采用医学图像,含有复杂纹理的自然图像和含有严重噪声的SAR图像三类测试数据,验证了EAS方法的性能。数值实验结果表明,EAS方法对不同的压缩感知算法均有很大的提升,能够显著提高图像的重构质量和视觉效果。 相似文献
4.
由于多尺度小波变换的分块压缩感知算法(MS-BCS-SPL)将每层子带信息进行分块时,使得每子带中各子块采用相同的采样率;但是,当不同的图像子块含有不同的边缘信息时,对这些子块采用相同的采样率会造成资源不合理的分配。因此在MS-BCS-SPL算法的基础上,利用图像块边缘信息的不同和图像块的方向性,将总的采样率自适应分配给各层子带中的各图像块,实现多尺度分块压缩感知的自适应采样。实验结果表明,在不同采样率,尤其较低采样率时,该算法不仅比MS-BCS-SPL算法采用了较少的采样数目,节约资源;而且比其可重构较高质量的图像。 相似文献
5.
6.
基于小波变换的语音压缩感知处理 总被引:1,自引:0,他引:1
文章首先简单介绍了压缩感知(CS)理论框架,然后根据语音信号小波变换系数的特点,提出了改进的压缩感知算法,对高频系数进行压缩处理,低频系数不变.采用基追踪算法重构出高频系数,再利用小波反变换得到原始语音信号.实验结果表明,在相同的测量点数下,本文的算法比原有CS算法在重构语音的信噪比和MOS分上都有较大的提升. 相似文献
7.
本文基于语音信号在DCT域的近似稀疏性,采用压缩感知(Compressed Sensing, CS)理论对其进行压缩采样和重构。CS中的梯度追踪(Gradient Pursuit, GP)算法因计算量小,迭代硬阈值(Iterative Hard Threshold, IHT)算法因实现简单,被广泛用来重构信号。针对压缩感知理论中的GP算法的支撑集在每次迭代时仅增加一个元素,以及该算法每步迭代时仅经过一次沿负梯度方向搜索求得的解可能不是最优解的问题,本文提出了语音重构的硬阈值梯度追踪(Hard Threshold Gradient Pursuit, HTGP)算法。该算法利用IHT算法的思想选择原子更新支撑集,每步迭代时支撑集中含有K个元素,而且HTGP算法每步迭代时经过k次沿负梯度方向搜索得到最优解来代替使用计算量巨大的最小二乘来求解。实验结果表明,压缩比相同的情况下,HTGP算法具有更快速的收敛性和更高的信噪比。 相似文献
8.
自适应滤波框架中,滤波器的抽头系数可以利用特定的自适应算法达到近似维纳解,从而使滤波器的输出误差达到最小.将这个框架应用到压缩感知重构信号中,信号的稀疏系数等效为滤波器系数权值向量,从而可获得最佳的稀疏系数,以高概率重构信号.本文介绍了已有学者研究出的一种L0最小均方算法(L0-LMS),该算法中引入零引力项加快了权矢量向稀疏解收敛的速度,保证解的稀疏性.通过仿真可知,基于自适应滤波算法重构稀疏信号的性能较好,甚至优于压缩感知中常用的OMP算法. 相似文献
9.
10.
基于自相关观测的语音信号压缩感知 总被引:1,自引:0,他引:1
本文基于压缩感知技术,根据语音信号的特点,提出了一种基于自相关特性的截断循环自相关矩阵作为观测矩阵,并在此基础上,从实用的角度出发,提出了基于模板匹配的近似截断循环自相关矩阵作为观测矩阵,并证明其满足RIP特性。由语音信号与截断循环自相关矩阵、近似截断循环自相关矩阵和高斯随机矩阵分别构造相应的观测,采用BP算法来重构原始语音信号。实验表明,由2个模板元素线性组合而成的近似截断循环自相关矩阵重构原始语音信号的性能与截断循环自相关矩阵的重构性能相当,且优于经典高斯随机矩阵,而且在相同的重构性能下,其压缩比远大于高斯随机观测矩阵,对语音信号的压缩性能有了明显地提高。 相似文献
11.
针对传统的自适应均衡算法在稀疏多径信道下性能表现不佳的问题,提出了一种基于基追踪降噪的自适应均衡算法。该算法利用稀疏多径信道下均衡器权值的稀疏性,将自适应均衡器的训练过程看作压缩感知理论中稀疏信号对字典的加权求和,并利用重构算法直接对稀疏权值进行求解,解决了迭代参数设置和收敛慢的问题。采用基追踪降噪作为重构算法并选用变量分离近似稀疏重构对该最优化问题进行求解,既提高了权值的重构精度又降低了计算的复杂度。仿真结果表明,所提算法能够以较低的计算量和较少的训练序列达到更优性能,这对提升系统的通信性能具有参考价值。 相似文献
12.
基于正交匹配追踪算法的语音信号重构研究 总被引:1,自引:0,他引:1
压缩感知理论是近年来提出的一种新兴的基于信号稀疏性的采样理论。正交匹配追踪算法是其中一种典型的重构方法,文中针对语音信号重构中存在的不足,采用正交匹配追踪算法对语音信号进行信号重构,相比于传统的压缩感知的重构算法更加地适用于对含噪语音、重构语音质量会更高,去噪效果也会更明显。为语音信号CS性能的基础性的研究提供了参考。 相似文献
13.
针对传统的子空间追踪算法(SP)只利用了信号在某个字典下是稀疏的或者可压缩的这个简单的先验知识,没有将信号的内在模型考虑进去,因此重构效率较低的问题。根据一般信号的小波树系数的特点,提出了一种基于小波树模型的改进子空间追踪算法。由于引入了信号的小波树内在模型,使得改进后算法中得到的最佳K项小波树结构稀疏逼近比子空间追踪算法中的最佳K项稀疏逼近更加接近于原信号,实验仿真证明基于小波树模型的SP算法的重构性更好。 相似文献
14.
Aiming at the long running time problem of the traditional forward-backward pursuit (FBP) algorithm,an adaptive acceleration forward-backward pursuit (AAFBP) algorithm was proposed.The reconstruction process of AAFBP algorithm can be divided into two stages.In the forward stage,the AAFBP algorithm used the adaptive threshold to select the right amount of atoms to join the support set.In the backward stage,based on the projection coefficient of the atoms,the deletion threshold was introduced to remove the atoms adaptively and the excessive backtracking phenomenon in adaptive process was overcome simultaneously.The proposed method can ensure the number of the selected atoms more random,and more right atoms were retained in each iteration.The simulation results of one-dimensional sparse signal and two-dimensional image show that the AAFBP algorithm has more advantages in both the accuracy of reconstruction and the running time. 相似文献
15.
基于压缩感知的OMP图像重构算法改进 总被引:2,自引:0,他引:2
阐述了压缩感知相关理论以及信号的重构算法,围绕其中的匹配追踪系列算法展开研究,同时在正交匹配追踪算法(OMP算法)的基础上引入了几种改进算法,并结合OMP算法本身耗时长、速度慢的问题,给出了一种OMP的改进方案,该方案将图像进行分块再处理,从而大幅降低了OMP算法迭代的矩阵规模。在相同条件下该算法的主客观重建效果均优于原来的算法。 相似文献
16.
17.
18.
19.
压缩感知(Compressed Sensing,CS)是近年来新兴的一种信号获取技术.沿着CS理论的发展历程介绍了CS理论框架,给出了其严格的数学描述,着重讨论了对原始信号的重构技术,最后介绍了一些可能的应用. 相似文献