共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of their strategic position between the granule cell and pyramidal cell layers, neurons of the hilar region of the hippocampal formation are likely to play an important role in the information processing between the entorhinal cortex and the hippocampus proper. Here we present an electrophysiological characterization of anatomically identified neurons in the fascia dentata as studied using patch-pipette recordings and subsequent biocytin-staining of neurons in slices. The resting potential, input resistance (RN), membrane time constant (taum), "sag" in hyperpolarizing responses, maximum firing rate during a 1-s current pulse, spike width, and fast and slow afterhyperpolarizations (AHPs) were determined for several different types of hilar neurons. Basket cells had a dense axonal plexus almost exclusively within the granule cell layer and were distinguishable by their low RN, short taum, lack of sag, and rapid firing rates. Dentate granule cells also lacked sag and were identifiable by their higher RN, longer taum, and lower firing rates than basket cells. Mossy cells had extensive axon collaterals within the hilus and a few long-range collaterals to the inner molecular layer and CA3c and were characterized physiologically by small fast and slow AHPs. Spiny and aspiny hilar interneurons projected primarily either to the inner or outer segment of the molecular layer and had a dense intrahilar axonal plexus, terminating onto somata within the hilus and CA3c. Physiologically, spiny hilar interneurons generally had higher RN values than mossy cells and a smaller slow AHP than aspiny interneurons. The specialized physiological properties of different classes of hilar neurons are likely to be important determinants of their functional operation within the hippocampal circuitry. 相似文献
2.
GW Mathern JK Pretorius D Mendoza A Lozada HI Kornblum 《Canadian Metallurgical Quarterly》1998,54(6):734-753
There is considerable controversy whether aberrant fascia dentata (FD) mossy fiber sprouting is an epiphenomena related to neuronal loss or a pathologic abnormality responsible for spontaneous limbic seizures. If mossy fiber sprouting contributes to seizures, then reorganized axon circuits should alter postsynaptic glutamate receptor properties. In the pilocarpine-status rat model, this study determined if changes in alpha amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) and n-methyl-D-aspartic acid (NMDA) receptor subunit mRNA levels correlated with mossy fiber sprouting. Sprague-Dawley rats were injected with pilocarpine (320 mg/kg; i.p.) and maintained in status epilepticus for 6 to 8 hours (pilocarpine-status). Rats were killed during the: (1) latent phase after neuronal loss but before spontaneous limbic seizures (day 11 poststatus; n = 7); (2) early seizure phase after their first seizures (day 25; n = 7); and (3) chronic seizure phase after many seizures (day 85; n = 9). Hippocampi were studied for neuron counts, inner molecular layer (IML) neo-Timm's staining, and GluR1-3 and NMDAR1-2b mRNA levels. Compared with controls, pilocarpine-status rats in the: (1) latent phase showed increased FD GluR3, NMDAR1, and NMDAR2b; greater CA4 and CA1 NMDAR1; and decreased subiculum GluR1 hybridization densities; (2) early seizure phase showed increased FD GluR3, increased CA1 NMDAR1, and decreased subiculum NMDAR2b densities; and (3) chronic seizure phase showed increased FD GluR2; increased FD and CA4 GluR3; decreased CA1 GluR2; and decreased subiculum GluR1, GluR2, NMDAR1, and NMDAR2b levels. In multivariate analyses, greater IML neo-Timm's staining: (1) positively correlated with FD GluR3 and NMDAR1 and (2) negatively correlated with CA1 and subiculum GluR1 and GluR2 mRNA levels. These results indicate that: (1) hippocampal AMPA and NMDA receptor subunit mRNA levels changed as rats progressed from the latent to chronic seizure phase and (2) certain subunit alterations correlated with mossy fiber sprouting. Our findings support the hypothesis that aberrant axon circuitry alters postsynaptic hippocampal glutamate receptor subunit stoichiometry; this may contribute to limbic epileptogenesis. 相似文献
3.
The pathway from the entorhinal cortical region to the hippocampal formation has previously been shown to be comprised of two sub-systems, one of which projects predominantly to the ipsilateral fascia dentata and regio inferior of the hippocampus proper, and a second which projects bilaterally to regio superior. The goal of the present investigation was to determine if these two pathways might originate from different cell populations within the entorhinal area. The cells of origin of these entorhinal pathways were identified by retrograde labeling with horseradish peroxidase (HRP). Injections which labeled the entorhinal terminal fields in both the fascia dentata and regio superior resulted in the retrograde labeling of two populations of cells in the entorhinal area. Ipsilateral to the injection, HRP reaction product was found in the cells of layer II (predominantly stellate cells) and the cells of layer III (predominantly pyramidal cells). Contralateral to the injections, however, the reaction product was found almost exclusively in the cells of layer III. With selective injections of the entorhinal terminal field in regio superior, only the cells of layer III were labeled, but these were labeled bilaterally. Selective injection of the entorhinal terminal field in the fascia dentata, however, resulted in the labeling of cells of layer II, but not of layer III, and these cells of layer II were labeled almost exclusively ipsilaterally. A very small number of labeled cells in layer II were, however, found contralateral to the injection as well. No labeled cells were found either in the presubiculum or parasubiculum following injections of the hippocampal formation. These cell populations were found capable of retrograde transport of HRP, however, since cells in both presubiculum and parasubiculum were labeled following HRP injections into the contralateral entorhinal area. These results suggest that the projections to the fascia dentata originate from the cells of layer II, while the projections to regio superior originate from the cells of layer III of the entorhinal region proper. The very slight crossed projection from the entorhinal area to the contralateral area dentata probably originates from the small population of cells in layer II which are labeled following HRP injections in the contralateral area dentata. 相似文献
4.
1. The aim of the present study was to determine whether synapses formed by dorsal root afferents that regenerate into intraspinal transplants of fetal spinal cord are functional. Severed L4 or L5 dorsal root stumps were placed at the bottom of dorsal quadrant cavities made in the lumbar spinal cords of adult rats and juxtaposed to embryonic day 14 spinal cord transplants. 2. In animals examined 5-10 weeks later, we recorded extracellularly in transplants from 43 units that fired in response to electrical stimulation of the implanted dorsal root. Latency fluctuations of extracellular firing that increase with stimulus and failure to follow high-frequency and posttetanic potentiation of extracellular firing stimulation suggest that synapses with conventional properties are formed between regenerating afferents and transplant neurons. Limited intracellular recordings confirmed the existence of excitatory postsynaptic potentials in transplant neurons after dorsal root stimulation. 3. In 16 units, extracellular firing occurred in response to single shock stimulation. The remainder of the units required two or more dorsal root shocks to evoke firing; some of these connections also may be monosynaptic. 4. Under the assumption that single shock firing was most likely the result of monosynaptic connections between transplant neurons and regenerated dorsal root fibers, we estimated the conduction velocities of regenerated fibers. These estimates suggest that fibers with conduction velocities in the C, A delta, and A alpha/beta ranges regenerate into transplants of embryonic spinal cord. 5. The results demonstrate that regenerated dorsal root axons establish functional synaptic connections with transplant neurons. The implications for using fetal transplants to help rebuild spinal reflex circuits after spinal cord injury are considered. 相似文献
5.
6.
1. The effects of unilateral gamma-ray irradiation at birth on the properties of adult CA3 pyramidal neurons have been studied in hippocampal slices. 2. Neonatal gamma-ray irradiation reduced by 80% the number of granule cells and prevented the formation of mossy fiber synapses without reducing the number of CA3 pyramidal cells. The destruction of the mossy fibers was also confirmed with extracellular recordings. 3. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) evoked by stimulation of the stratum radiatum had similar properties in nonirradiated and irradiated hippocampi: the EPSP reversed polarity near 0 mV, was reduced in amplitude by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) and D(-)-2-amino-5-phosphonovalerate (APV, 50 microM); the fast and slow IPSPs reversed at -75 and -100 mV, were blocked by bicuculline (10 microM), and reduced by phaclofen (0.5 mM), respectively. 4. Bath application of kainate (300-500 nM) evoked epileptiform activity in 81.5% of nonirradiated hippocampal CA3 regions and only in 29% of the irradiated CA3 regions. In contrast, bath application of high potassium (7 mM) and bicuculline (10 microM) generated spontaneous and evoked epileptiform activity in both nonirradiated and irradiated CA3 regions. 5. In nonirradiated and irradiated CA3 regions, kainate (200-300 nM) reduced the amplitude of the fast and slow IPSPs, reduced spike accommodation, and increased the duration of the action potential generated by a depolarizing pulse. 6. The postsynaptic responses of CA3 neurons to bath application of glutamatergic agonists were similar in nonirradiated and irradiated hippocampi in terms of amplitude, reversal potential, and pharmacology. 7. It is concluded that the most conspicuous effect of neonatal gamma-ray irradiation is to prevent the epileptic action of kainate. We propose that kainate generates epileptiform activity in the intact CA3 region by activating high-affinity binding sites located on the mossy fiber terminals. 相似文献
7.
GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus 总被引:1,自引:0,他引:1
Dentate granule cells communicate with their postsynaptic targets by three distinct terminal types. These include the large mossy terminals, filopodial extensions of the mossy terminals, and smaller en passant synaptic varicosities. We examined the postsynaptic targets of mossy fibers by combining in vivo intracellular labeling of granule cells, immunocytochemistry, and electron microscopy. Single granule cells formed large, complex "mossy" synapses on 11-15 CA3 pyramidal cells and 7-12 hilar mossy cells. In contrast, GABAergic interneurons, identified with immunostaining for substance P-receptor, parvalbumin, and mGluR1a-receptor, were selectively innervated by very thin (filopodial) extensions of the mossy terminals and by small en passant boutons in both the hilar and CA3 regions. These terminals formed single, often perforated, asymmetric synapses on the cell bodies, dendrites, and spines of GABAergic interneurons. The number of filopodial extensions and small terminals was 10 times larger than the number of mossy terminals. These findings show that in contrast to cortical pyramidal neurons, (1) granule cells developed distinct types of terminals to affect interneurons and pyramidal cells and (2) they innervated more inhibitory than excitatory cells. These findings may explain the physiological observations that increased activity of granule cells suppresses the overall excitability of the CA3 recurrent system and may form the structural basis of the target-dependent regulation of glutamate release in the mossy fiber system. 相似文献
8.
The whole cell configuration of the patch clamp technique was used to study the mechanisms of induction of long term depression (LTD) occurring at the mossy fibre-CA3 synapse between postnatal (P) day 6 and P13. In control conditions, when two pulses were delivered to the mossy fibres with an interval of 50 ms a potentiation of the EPSC evoked by the second pulse associated with a reduction in the number of failures was observed. Tetanization of the mossy fibres induced LTD of the responses to the first and second stimulus without affecting the paired pulse facilitation. Loading the postsynaptic cell with BAPTA prevented the induction of LTD but did not modify the paired pulse facilitation, suggesting that LTD induction occurs at the postsynaptic site. 相似文献
9.
The perireticular nucleus is a recently described thin sheet of small cells among the fibres of the internal capsule, lying lateral to the thalamic reticular nucleus and medial to the globus pallidus (Clemence and Mitrofanis [1992]. J. Comp. Neurol. 322:167-180). During development, the perireticular nucleus is relatively large, lying in the path of the growing corticofugal and thalamocortical axons and filling the area of the internal capsule lateral to the thalamic reticular nucleus. After these axons have formed their connections, the perireticular nucleus rapidly decreases in size, leaving only a few cells in the adult (Mitrofanis [1992] J. Comp. Neurol. 320:161-181). In this study, we aimed to investigate the connections between the developing cortex and thalamus by making injections of tracer into the cortical plate. Injections of Horse Radish Peroxidase (HRP), Wheat Germ Agglutinin bound to HRP (WGA-HRP) and 1'dioctadecyl-3,3,3',3 tetramethycarbocyanine perchlorate (DiI) were made in vivo between embryonic day (E) 18 and adult and DiI was placed in the fixed brains of rats aged between E16 and postnatal day (P)1. Between E17 and P10, the retrograde perikaryal labelling resulting from these injections revealed a transient projection from the perireticular nucleus to the ipsilateral cortical plate. No cells were labelled in the thalamic reticular nucleus. This suggests that the perireticular nucleus must be regarded as a group of cells distinct from the thalamic reticular nucleus and having a separate role in development. Comparisons between the perireticular cells and the cells of the cortical subplate suggest that both may be playing comparable roles in early development, possibly guiding fibres towards their end stations or serving to rearrange the complex mapped projections linking the thalamus and cortex. 相似文献
10.
PURPOSE: To develop and apply a method for the derivation of cancellous bone architectural parameters from in vivo magnetic resonance (MR) images of the distal radius and to evaluate these parameters as predictors of vertebral fracture status in osteopenia. MATERIALS AND METHODS: MR images (137 x 137 x 500-micron3 voxel size) were acquired with a three-dimensional partial flip-angle spin-echo pulse sequence in the distal radius of 36 women. Subjects were classified as healthy or with osteoporosis on the basis of vertebral deformity and bone mineral density (BMD). Images rated as of adequate quality in 20 subjects were processed with a method that is applicable in the limited spatial resolution regime. The method relies on histogram deconvolution to obviate binary segmentation. Cancellous bone structure was treated as a quasi-regular lattice and analyzed with spatial autocorrelation, yielding parameters that quantify intertrabecular spacing, contiguity, and a measure of longitudinal alignment called tubularity. RESULTS: Whereas neither BMD nor any of the structural parameters individually correlated significantly with vertebral deformity fraction, a simple function that involved tubularity and longitudinal spacing predicted deformity fraction well (r = .78, P < .005). CONCLUSION: Histomorphometric parameters characterizing cancellous bone in the distal radius can be derived from in vivo MR microimages and are predictive of vertebral deformity. 相似文献
11.
J Kappler U Junghans A Koops CC Stichel HJ Hausser H Kresse HW Müller 《Canadian Metallurgical Quarterly》1997,9(2):306-318
Recently we have shown that biglycan, a small chondroitin sulphate proteoglycan of the extracellular matrix, supports the survival of cultured neurons from the developing neocortex of embryonic day 15 rats. Here we investigate the structure-function relationship of this neurotrophic proteoglycan and show that chondroitin/dermatan sulphate chains are the active moieties supporting survival. Heparin, a highly sulphated glucosaminoglycan, is less active than the galactosaminoglycans (chondroitin-4-sulphate, chondroitin-6-sulphate and dermatan sulphate), whereas hyaluronic acid, an unsulphated glucosaminoglycan, does not support neuron survival. Galactosaminoglycans must be in direct contact with neurons to cause survival. Experiments with elevated potassium concentrations and antagonists of voltage-gated calcium channels exclude the involvement of membrane depolarization. However, genistein and an erbstatin analogue, which are inhibitors of tyrosine kinases with low specificity, abolished neuron survival in the presence of chondroitin/dermatan sulphate, whereas a selective inhibitor of neurotrophin receptor kinases (K252a) had no suppressive effect. Thus, yet unidentified tyrosine kinases are involved in the chondroitin/dermatan sulphate-dependent survival of neocortical neurons. In the embryonic stages of rat neocortical development chondroitin sulphate is mainly located in layers I, V and VI and the subplate. Chondroitin sulphate expression is maintained after birth, extends up to cortical layer IV on postnatal day 7, and is down-regulated until postnatal day 21 concomitant with the period of naturally occurring cell death. The latter observation is consistent with a putative role of chondroitin sulphate in the control of neuron survival during cortical histogenesis. 相似文献
12.
To obtain insight into the development of the heterogeneous intracerebral populations of luteinizing hormone-releasing hormone (LHRH) neurons, their spatiotemporal appearance was examined at different stages in normal rat embryos, in nasal epithelial explants in vitro, and in intrauterine nasal-operated embryos. Following the appearance of nerve cell adhesion molecule in the nasal placode at embryonic day (E) 12.5, LHRH neurons, generated in the nasal placode at E13.5, penetrated the forebrain vesicle (FV) by E14.5-15.5. After E16.5, as the FV elongated to form the olfactory bulb, the migrating neurons traversed posteriorly through the interhemispheric space to penetrate the septopreoptic (S-P) area. By E18.5, LHRH neurons were detected in the preoptic-diagonal band (P-D) area as well as in the S-P region, along with some scattered extrahypothalamic LHRH neurons. To determine the source of these neurons, we separately cultured dissected parts of E12.5 nasal pit epithelium. Neuronal generation was predominantly from the medial wall epithelium (NAP), but some LHRH neurons originated in the roof epithelium. Cocultures of the NAP (E12.5) with the FV, median eminence-arcuate complex, Rathke's pouch, mesencephalon, or medulla oblongata from E14.5 embryos revealed the ability of LHRH cells to penetrate all of these tissues. Uni- or bilateral nasal destruction was conducted at E16.5 or E15.5, respectively, and examined at E18.5 and E21.5. In the operated embryos, most LHRH neurons were present in the P-D system and some in the S-P area. This finding suggests that the neurons generated before E15.5 are primarily predisposed to form the P-D system, whereas those derived afterward form the S-P system. 相似文献
13.
AM Antonova 《Canadian Metallurgical Quarterly》1976,70(6):91-99
Different forms of neurons of the temporal cortex of the adult cat were studied in frontal and sagittal sections by the Golgi method in the author's modification. It was shown that the 2nd type Golgi cells (spider neurons, basket cells, spindle stellate cells with two bunches of processes, stellate cells with radial processes, Martinotti's cells) are characterized by local restruction of their processes and differ from one another in the specificity of axonal aborizations. The comparison of axonal systems of the pyramidal and above forms of the 2nd type Golgi cells has shown the set of collaterals of one pyramidal cell to consist of fragments of axonal branching of different forms of short-axon neurons. On the basis of the data obtained the pyramidal neuron is considered as a universal type of cell. The structural features of its receptive surface sustain the converging on it of a wide range of polymodal signals, the difference in the quality of presynaptic structures being responsible for the plasticity of a functional change of its integrative activity. 相似文献
14.
A Represa I Jorquera G Le Gal La Salle Y Ben-Ari 《Canadian Metallurgical Quarterly》1993,3(3):257-268
In the present study, using Golgi and electron microscopy techniques, experimentally induced epilepsy (kindling and kainate treatment) elicited collateral sprouting of mossy fibers in rat hippocampus. Collateral branches invade the hilus, cross the granule cell layer, and distribute throughout the inner third of the molecular layer. These newly developed collaterals may acquire the typical features of mossy fibers including giant fiber varicosities (mousses), although the mean surface of these mousses was thinner in these collaterals than in terminal branches. Granule cell dendrites may develop giant thorny excrescences, suggesting that the targets of these collaterals are granule cells. Giant synaptic boutons appear in the inner third of molecular layer of epileptic rats. These boutons acquire the morphological features of mossy fiber boutons and made multiple synaptic contacts with dendritic spines. The analysis of the profile types suggests that some of the newly developed collateral mossy fibers made hypotrophic synaptic contacts. 相似文献
15.
Y Ikegaya 《Canadian Metallurgical Quarterly》1999,19(2):802-812
The hippocampal mossy fibers, which originate from the dentate granule cells, develop mainly in the early postnatal period and are involved in numerous pathological processes. In this study, hippocampal slices prepared from premature rats were cultivated in the presence of convulsants to evaluate the influences of epileptiform activities on mossy fiber ontogeny. Electrophysiological and histochemical analyses revealed that prolonged hyperexcitability inhibited proper growth of the mossy fibers and caused ectopic innervation to the stratum oriens and the dentate molecular layer. These phenomena were prevented by pharmacological blockade of L-type Ca2+ channels, which did not affect convulsant-evoked ictal bursts. After single-pulse stimulation of the stratum granulosum in the slices cultured under paroxysmal conditions, the dentate gyrus displayed excessive excitation, but synaptic transmission to the CA3 region was hypoactive. However, brief repetitive stimulation elicited delayed epileptiform discharges in the CA3 region that were inhibited by an NMDA receptor antagonist. Chronic treatment with an L-type Ca2+ channel blocker ameliorated such aberrant neurotransmissions. These results suggest that ictal neuron activities at the developmental stage of the mossy fibers bring about the errant maturation associated with hippocampal dysfunction, which may form a cellular basis for the sequelae of childhood epilepsy, including chronic epilepsy or cognitive deficits. Thus I propose that L-type Ca2+ channel blockers can ameliorate the aversive prognosis of childhood epilepsy. 相似文献
16.
The influence of host immunogenetics on the outcome of vertically transmitted HIV infection in children was examined in a multicenter cross sectional study of long term survivors and rapid progressors. Sequence-based typing was performed for the DRB1, DQB1 and HLA-A loci. 36.7% of 30 children surviving more than 8 years had one or more of the HLA-DR13 alleles, versus none of 14 rapidly progressing children who died within 2 years of age, p = 0.009, Haldane RR = 17.1. The alleles variably associated with this beneficial response to HIV were: DRB1*1301, DRB1*1302, DRB1*1303 and DRB1*1310, suggesting that the DR13 effect acted as a dominant trait. An additional 6 children were typed only by the SSOP method resulting in 44.4% of 36 long term surviving children with a DR13 allele and none of 14 rapid progressors, p = 0.002, Haldane RR = 23.3. No single DQB1 allele accounted for the HLA-DR13 allele association. In contrast, the presence of HLA A*2301 was associated with rapid progression to AIDS, 4% of long term survivors vs. 57.1% of 7 rapid progressors, p = 0.0006, RR = 0.031. Although the sample size is small, the marked differences in allele frequency along with differences between the peptide binding pockets of the HLA-A9 group of alleles including HLA A*2301 and the remainder of the HLA-A alleles suggest a structural basis for the dominant disadvantageous immune response to HIV conferred by A*2301. 相似文献
17.
In the developing visual cortex activity-dependent refinement of synaptic connectivity is thought to involve synaptic plasticity processes analogous to long-term potentiation (LTP). The recently described conversion of so-called silent synapses to functional ones might underlie some forms of LTP. Using whole-cell recording and minimal stimulation procedures in immature pyramidal neurons, we demonstrate here the existence of functionally silent synapses, i.e., glutamatergic synapses that show only NMDA receptor-mediated transmission, in the neonatal rat visual cortex. The incidence of silent synapses strongly decreased during early postnatal development. After pairing presynaptic stimulation with postsynaptic depolarization, silent synapses were converted to functional ones in an LTP-like manner, as indicated by the long-lasting induction of AMPA receptor-mediated synaptic transmission. This conversion was dependent on the activation of NMDA receptors during the pairing protocol. The selective activation of NMDA receptors at silent synapses could be explained presynaptically by assuming a lower glutamate concentration compared with functional ones. However, we found no differences in glutamate concentration-dependent properties of NMDA receptor-mediated PSCs, suggesting that synaptic glutamate concentration is similar in silent and functional synapses. Our results thus support a postsynaptic mechanism underlying silent synapses, i.e., that they do not contain functional AMPA receptors. Synaptic plasticity at silent synapses might be expressed postsynaptically by modification of nonfunctional AMPA receptors or rapid membrane insertion of AMPA receptors. This conversion of silent synapses to functional ones might play a major role in activity-dependent synaptic refinement during development of the visual cortex. 相似文献
18.
19.
Targeting and innervation of the cerebral cortex by thalamic afferents is a key event in the specification of cortical areas. The molecular targets of thalamic regulation, however, have remained elusive. We now demonstrate that thalamic afferents regulate the expression of gamma-aminobutyric acid type A (GABAA) receptors in developing rat neocortex, leading to the area-specific expression of receptor subtypes in the primary visual (V1) and somatosensory (S1) areas. Most strikingly, the alpha1- and alpha5-GABAA receptors exhibited a reciprocal expression pattern, which precisely reflected the distribution of thalamocortical afferents at postnatal day 7. Following unilateral lesions at the birth of the thalamic nuclei innervating V1 and S1 (lateral geniculate nucleus and ventrobasal complex, respectively), profound changes in subunit expression were detected 1 week later in the deprived cortical territories (layers III-IV of V1 and S1). The expression of the alpha1 subunit was strongly down-regulated in these layers to a level comparable to that in neighboring areas. Conversely, the alpha5 subunit was up-regulated and areal boundaries were no longer discernible in the lesioned hemisphere. Changes similar to the alpha5 subunit were also seen for the alpha2 and alpha3 subunits. These results indicate that the differential expression of GABAA receptor subtypes in developing neocortex is dependent on thalamic innervation, contributing to the emergence of functionally distinct areas. 相似文献
20.
DC Perry R Getz IY Lee D Panchison Y Okuda LP Miller 《Canadian Metallurgical Quarterly》1993,617(2):296-302
Transient forebrain ischemia was produced in gerbils by short-term occlusion of the common carotid arteries under halothane anesthesia. Histological analysis of brains 7 days post-ischemia demonstrated characteristic destruction of CA1 pyramidal cells. lambda Opiate binding (measured with [3H]naloxone in the presence of 300 nM diprenorphine) at 7 days post-ischemia was significantly increased in the stratum lucidum of the hippocampus (the mossy fiber layer), but not in any other region measured, including other hippocampal regions, cortex, amygdala, caudate putamen, thalamus, and hypothalamus. The increase in mossy fiber lambda binding was slow to develop (no increase detected up to 48 h post-ischemia), and long-lasting (binding remained elevated at 32 days post-ischemia). While MK-801 significantly inhibited CA1 pyramidal cell destruction when administered 20 min prior to ischemia, the increase in mossy fiber lambda binding was still evident. None of seven different opioid agonists and antagonists examined had an effect on either the pyramidal cell damage or increased mossy fiber lambda binding seen 7 days after ischemia. 相似文献