首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了改善入侵杂草优化算法解的质量,提出一种带局部搜索功能的入侵杂草优化算法。该算法按照一定概率对每代产生的最优个体执行球体局部搜索算子或Logistic映射搜索算子,在最优个体周围进行精细搜索,并用搜索到的较优个体代替最优个体,提高了算法的局部搜索能力和优化精度。并对7个测试函数进行了仿真实验,结果表明:该算法具有较高的优化性能。  相似文献   

2.
This paper considers the problem of augmenting a given graph by a cheapest possible set of additional edges in order to make the graph edge-biconnected. An application is the extension of an existing communication network to become robust against single link-failures. An evolutionary algorithm (EA) is presented which includes an effective preprocessing of the problem data and a local improvement procedure that is applied during initialization, recombination, and mutation. In this way, the EA searches the space of feasible, locally optimal solutions only. The variation operators were designed with particular emphasis on low computational effort and strong locality. Empirical results indicate the superiority of the new approach over two previous heuristic methods.  相似文献   

3.
This paper presents a new class of heuristics which embed an exact algorithm within the framework of a local search heuristic. This approach was inspired by related heuristics which we developed for a practical problem arising in electronics manufacture. The basic idea of this heuristic is to break the original problem into small subproblems having similar properties to the original problem. These subproblems are then solved using time intensive heuristic approaches or exact algorithms and the solution is re-embedded into the original problem. The electronics manufacturing problem where we originally used the embedded local search approach, contains the Travelling Salesman Problem (TSP) as a major subproblem. In this paper we further develop our embedded search heuristic, HyperOpt, and investigate its performance for the TSP in comparison to other local search based approaches. We introduce an interesting hybrid of HyperOpt and 3-opt for asymmetric TSPs which proves more efficient than HyperOpt or 3-opt alone. Since pure local search seldom yields solutions of high quality we also investigate the performance of the approaches in an iterated local search framework. We examine iterated approaches of Large-Step Markov Chain and Variable Neighbourhood Search type and investigate their performance when used in combination with HyperOpt. We report extensive computational results to investigate the performance of our heuristic approaches for asymmetric and Euclidean Travelling Salesman Problems. While for the symmetric TSP our approaches yield solutions of comparable quality to 2-opt heuristic, the hybrid methods proposed for asymmetric problems seem capable of compensating for the time intensive embedded heuristic by finding tours of better average quality than iterated 3-opt in many less iterations and providing the best heuristic solutions known, for some instance classes.  相似文献   

4.
We describe a convergence theory for evolutionary pattern search algorithms (EPSA) on a broad class of unconstrained and linearly constrained problems. EPSA adaptively modify the step size of the mutation operator in response to the success of previous optimization steps. The design of EPSA is inspired by recent analyzes of pattern search methods. Our analysis significantly extends the previous convergence theory for EPSA. Our analysis applies to a broader class of EPSA and it applies to problems that are nonsmooth, have unbounded objective functions, and are linearly constrained. Further, we describe a modest change to the algorithmic framework of EPSA for which a nonprobabilistic convergence theory applies. These analyses are also noteworthy because they are considerably simpler than previous analyses of EPSA  相似文献   

5.
During the past decade, considerable research has been conducted on constrained optimization problems (COPs) which are frequently encountered in practical engineering applications. By introducing resource limitations as constraints, the optimal solutions in COPs are generally located on boundaries of feasible design space, which leads to search difficulties when applying conventional optimization algorithms, especially for complex constraint problems. Even though penalty function method has been frequently used for handling the constraints, the adjustment of control parameters is often complicated and involves a trial-and-error approach. To overcome these difficulties, a modified particle swarm optimization (PSO) algorithm named parallel boundary search particle swarm optimization (PBSPSO) algorithm is proposed in this paper. Modified constrained PSO algorithm is adopted to conduct global search in one branch while Subset Constrained Boundary Narrower (SCBN) function and sequential quadratic programming (SQP) are applied to perform local boundary search in another branch. A cooperative mechanism of the two branches has been built in which locations of the particles near boundaries of constraints are selected as initial positions of local boundary search and the solutions of local boundary search will lead the global search direction to boundaries of active constraints. The cooperation behavior of the two branches effectively reinforces the optimization capability of the PSO algorithm. The optimization performance of PBSPSO algorithm is illustrated through 13 CEC06 test functions and 5 common engineering problems. The results are compared with other state-of-the-art algorithms and it is shown that the proposed algorithm possesses a competitive global search capability and is effective for constrained optimization problems in engineering applications.  相似文献   

6.
为了解决布谷鸟搜索算法后期收敛速度慢、求解精度不高、易陷入局部最优等缺陷,提出了一种基于Powell局部搜索策略的全局优化布谷鸟搜索算法.算法将布谷鸟全局搜索能力与Powell方法的局部寻优性能有机地结合,并根据适应度值逐步构建精英种群候选解池在迭代后期牵引Powell搜索的局部优化,在保证求解速度、尽可能找到全局极值点的同时提高算法的求解精度.对52个典型测试函数实验结果表明,该算法相比于传统的布谷鸟搜索算法不仅寻优精度和寻优率有所提高,并且适应能力强、鲁棒性好,与最新提出的其他改进算法相比也具有一定的竞争优势.  相似文献   

7.
This paper proposes a modified harmony search (MHS) algorithm with an intersect mutation operator and cellular local search for continuous function optimization problems. Instead of focusing on the intelligent tuning of the parameters during the searching process, the MHS algorithm divides all harmonies in harmony memory into a better part and a worse part according to their fitness. The novel intersect mutation operation has been developed to generate new -harmony vectors. Furthermore, a cellular local search also has been developed in MHS, that helps to improve the optimization performance by exploring a huge search space in the early run phase to avoid premature, and exploiting a small region in the later run phase to refine the final solutions. To obtain better parameter settings for the proposed MHS algorithm, the impacts of the parameters are analyzed by an orthogonal test and a range analysis method. Finally, two sets of famous benchmark functions have been used to test and evaluate the performance of the proposed MHS algorithm. Functions in these benchmark sets have different characteristics so they can give a comprehensive evaluation on the performance of MHS. The experimental results show that the proposed algorithm not only performs better than those state-of-the-art HS variants but is also competitive with other famous meta-heuristic algorithms in terms of the solution accuracy and efficiency.  相似文献   

8.
We present two sequential and one parallel global optimization codes, that belong to the stochastic class, and an interface routine that enables the use of the Merlin/MCL environment as a non-interactive local optimizer. This interface proved extremely important, since it provides flexibility, effectiveness and robustness to the local search task that is in turn employed by the global procedures. We demonstrate the use of the parallel code to a molecular conformation problem.

Program summary

Title of program: PANMINCatalogue identifier: ADSUProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSUProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer for which the program is designed and others on which it has been tested: PANMIN is designed for UNIX machines. The parallel code runs on either shared memory architectures or on a distributed system. The code has been tested on a SUN Microsystems ENTERPRISE 450 with four CPUs, and on a 48-node cluster under Linux, with both the GNU g77 and the Portland group compilers. The parallel implementation is based on MPI and has been tested with LAM MPI and MPICHInstallation: University of Ioannina, GreeceProgramming language used: Fortran-77Memory required to execute with typical data: Approximately O(n2) words, where n is the number of variablesNo. of bits in a word: 64No. of processors used: 1 or manyHas the code been vectorised or parallelized?: Parallelized using MPINo. of bytes in distributed program, including test data, etc.: 147163No. of lines in distributed program, including the test data, etc.: 14366Distribution format: gzipped tar fileNature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques can be trapped in any local minimum. Global Optimization is then the appropriate tool. For example, solving a non-linear system of equations via optimization, one may encounter many local minima that do not correspond to solutions, i.e. they are far from zeroMethod of solution: PANMIN is a suite of programs for Global Optimization that take advantage of the Merlin/MCL optimization environment [1,2]. We offer implementations of two algorithms that belong to the stochastic class and use local searches either as intermediate steps or as solution refinementRestrictions on the complexity of the problem: The only restriction is set by the available memory of the hardware configuration. The software can handle bound constrained problems. The Merlin Optimization environment must be installed. Availability of an MPI installation is necessary for executing the parallel codeTypical running time: Depending on the objective functionReferences: [1] D.G. Papageorgiou, I.N. Demetropoulos, I.E. Lagaris, Merlin-3.0. A multidimensional optimization environment, Comput. Phys. Commun. 109 (1998) 227-249. [2] D.G. Papageorgiou, I.N. Demetropoulos, I.E. Lagaris, The Merlin Control Language for strategic optimization, Comput. Phys. Commun. 109 (1998) 250-275.  相似文献   

9.
In this contribution, a parallel hybrid local search algorithm for the three‐dimensional container loading problem (CLP) is proposed. First a simulated annealing method for the CLP is developed, which is then combined with an existing tabu search algorithm to form a hybrid metaheuristic. Finally, parallel versions are introduced for these algorithms. The emphasis is on CLP instances with a weakly heterogeneous load. Numerical tests based on the well‐known 700 test instances from Bischoff and Ratcliff are performed, and the outcome is compared with methods from other authors. The results show a high solution quality obtained with reasonable computing time.  相似文献   

10.
为了提高布谷鸟搜索算法求解函数优化问题的求精能力和收敛速度,提出了一种基于自适应机制的改进算法.自适应机制用于控制缩放因子和发现概率,以提高种群的多样性,避免早熟,从而使更多的个体参与演化,达到提高求精能力和收敛速度的效果.仿真实验结果表明,与标准的布谷鸟搜索算法相比,基于自适应机制缩放因子的改进算法(rCS)和基于自适应机制发现概率的改进算法(paCS)在求精能力和收敛速度上都有明显的提高;同时具有自适应缩放因子和自适应发现概率的改进算法(iCS)比rCS和paCS具有更优的求精能力和收敛速度.  相似文献   

11.
The security of networked computers plays a strategic role in modern computer systems. This task is so complicated because the determination of normal and abnormal behaviors in computer networks is hard, as the boundaries cannot be well defined. One of the difficulties in such a prediction process is the generation of false alarms in many anomaly based intrusion detection systems. However, fuzzy logic is an important solution to reduce the false alarm rate in determining intrusive activities. This paper proposes a parallel genetic local search algorithm (PAGELS) to generate fuzzy rules capable of detecting intrusive behaviors in computer networks. The system uses the Michigan's approach, where each individual represents a fuzzy rule which has the form “if condition then prediction.” In the presented algorithm the global population is divided into some subpopulations, each assigned to a distinct processor. Each subpopulation consists of the same class fuzzy rules. These rules evolve independently in the proposed parallel manner. Experimental results show that the presented algorithm produces fuzzy rules, which can be used to construct a reliable intrusion detection system.  相似文献   

12.
Neighborhood, or local, search is a popular and practical heuristic for many combinational optimization problems. We examine the neighborhood structures of two classes of problems, 0–1 integer programming and the mean tardiness job sequencing problem—from the viewpoint of state-space graphs in artificial intelligence. Such analysis is shown to provide fundamental insights into the nature of local search algorithms and provides a useful framework for evaluating and comparing such heuristics. Computational results are presented to support these observations.  相似文献   

13.
14.
15.
Discrete and stochastic resource allocation problems are difficult to solve because of the combinatorial explosion of feasible search space. Resource management is important area and a significant challenge is encountered when considering the relationship between uncertainty factors and inputs and outputs of processes in the service and manufacturing systems. These problems are unavailable in closed-form expressions for objective function. In this paper, we propose \(\hbox {PSO}_{\mathrm{OTL}}\), a new approach of the hybrid simulation optimization structure, to achieve a near optimal solution with few simulation replications. The basic search algorithm of particle swarm optimization (PSO) is applied for proper exploration and exploitation. Optimal computing budget allocation combined with PSO is used to reduce simulation replications and provide reliable evaluations and identifications for ranking particles of the PSO procedure. Two-sample t tests were used to reserve good particles and maintain the diversity of the swarm. Finally, trapping in local optimum in the design space was overcome by using the local search method to generate new diverse particles when a similar particle exists in the swarm. This study proposed intelligent manufacturing technology, called the \(\hbox {PSO}_{\mathrm{OTL}}\), and compared it with four algorithms. The results obtained demonstrate the superiority of \(\hbox {PSO}_{\mathrm{OTL}}\) in terms of search quality and computational cost reduction.  相似文献   

16.
In many data mining applications that address classification problems, feature and model selection are considered as key tasks. That is, appropriate input features of the classifier must be selected from a given (and often large) set of possible features and structure parameters of the classifier must be adapted with respect to these features and a given data set. This paper describes an evolutionary algorithm (EA) that performs feature and model selection simultaneously for radial basis function (RBF) classifiers. In order to reduce the optimization effort, various techniques are integrated that accelerate and improve the EA significantly: hybrid training of RBF networks, lazy evaluation, consideration of soft constraints by means of penalty terms, and temperature-based adaptive control of the EA. The feasibility and the benefits of the approach are demonstrated by means of four data mining problems: intrusion detection in computer networks, biometric signature verification, customer acquisition with direct marketing methods, and optimization of chemical production processes. It is shown that, compared to earlier EA-based RBF optimization techniques, the runtime is reduced by up to 99% while error rates are lowered by up to 86%, depending on the application. The algorithm is independent of specific applications so that many ideas and solutions can be transferred to other classifier paradigms.  相似文献   

17.
The uncapacitated warehouse location problem (UWLP) has been studied by many researchers. It has been solved using various approaches, including branch and bound linear programming, tabu search, simulated annealing, and genetic algorithms. This study presents a new local search (LS) approach to the UWLP that is quite simple and robust and is efficient in some cases. The algorithm was tested against standard OR Library benchmarks and M* instances, which have already been used to test other approaches. The results show that the only disadvantage of the algorithm is the exponential growth of its computation time with the problem size. However, the multi-search design suggested here enables the algorithm to run under multi-processor or multi-core systems, which are currently provided as part of standard PC configurations.  相似文献   

18.
A novel parallel hybrid intelligence optimization algorithm (PHIOA) is proposed based on combining the merits of particle swarm optimization with genetic algorithms. The PHIOA uses the ideas of selection, crossover and mutation from genetic algorithms (GAs) and the update velocity and situation of particle swarm optimization (PSO) under the independence of PSO and GAs. The proposed algorithm divides the individuals into two equation groups according to their fitness values. The subgroup of the top fitness values is evolved by GAs and the other subgroup is evolved by the PSO algorithm. The optimal number is selected as a global optimum at every circulation which shows better results than both PSO and GAs, then improves the overall performance of the algorithm. The PHIOA is used to optimize the structure and parameters of the fuzzy neural network. Finally, the experimental results have demonstrated the superiority of the proposed PHIOA to search the global optimal solution. The PHIOA can improve the error accuracy while speeding up the convergence process, and effectively avoid the premature convergence to compare with the existing methods.  相似文献   

19.
Single 2D line drawing is a straightforward method to illustrate 3D objects. The faces of an object depicted by a line drawing give very useful information for the reconstruction of its 3D geometry. Two recently proposed methods for face identification from line drawings are based on two steps: finding a set of circuits that may be faces and searching for real faces from the set according to some criteria. The two steps, however, involve two combinatorial problems. The number of the circuits generated in the first step grows exponentially with the number of edges of a line drawing. These circuits are then used as the input to the second combinatorial search step. When dealing with objects having more faces, the combinatorial explosion prevents these methods from finding solutions within feasible time. This paper proposes a new method to tackle the face identification problem by a variable-length genetic algorithm with novel heuristic and geometric constraints incorporated for local search. The hybrid GA solves the two combinatorial problems simultaneously. Experimental results show that our algorithm can find the faces of a line drawing having more than 30 faces much more efficiently. In addition, simulated annealing for solving the face identification problem is also implemented for comparison.  相似文献   

20.
This paper proposes a novel hybrid approach based on particle swarm optimization and local search, named PSOLS, for dynamic optimization problems. In the proposed approach, a swarm of particles with fuzzy social-only model is frequently applied to estimate the location of the peaks in the problem landscape. Upon convergence of the swarm to previously undetected positions in the search space, a local search agent (LSA) is created to exploit the respective region. Moreover, a density control mechanism is introduced to prevent too many LSAs crowding in the search space. Three adaptations to the basic approach are then proposed to manage the function evaluations in the way that are mostly allocated to the most promising areas of the search space. The first adapted algorithm, called HPSOLS, is aimed at improving PSOLS by stopping the local search in LSAs that are not contributing much to the search process. The second adapted, algorithm called CPSOLS, is a competitive algorithm which allocates extra function evaluations to the best performing LSA. The third adapted algorithm, called CHPSOLS, combines the fundamental ideas of HPSOLS and CPSOLS in a single algorithm. An extensive set of experiments is conducted on a variety of dynamic environments, generated by the moving peaks benchmark, to evaluate the performance of the proposed approach. Results are also compared with those of other state-of-the-art algorithms from the literature. The experimental results indicate the superiority of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号