首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
研究采用LIX62 2从含砷铜 /锌混合精矿加压浸出液中萃取铜的工艺过程。含Cu 10~ 15g/L ,pH =1 0~ 1 2的加压浸出料液 ,采用 2 2 5 8%LIX62 2 煤油体系 ,经过 3级萃取、3级洗涤和 3级反萃 ,萃余液中含铜可降到 0 3~ 0 6g/L ,平均铜萃取率达 95 40 % ,反萃液满足电积工艺要求。  相似文献   

2.
针对传统湿法炼锌过程铜回收工艺长、铜回收率低的难题,采用M5640直接从湿法炼锌还原浸出液中萃取分离回收铜,缩短铜回收流程,提高铜回收率。研究了混合时间、溶液pH值、萃取剂浓度、萃取级数等因素对铜萃取率的影响,以及反萃时间、相比等因素对载铜有机相中铜反萃率的影响。结果表明M5640对硫酸锌溶液中的铜离子具有很好的选择性萃取性能,在M5640浓度为15%、溶液pH值为2.0、相比(O/A)为1∶2、萃取时间为5 min的条件下,经过4级逆流萃取,铜萃取率为95.2%,锌萃取率仅为0.5%,铜锌分离系数为4 080。有机相经洗涤后,锌、铁等杂质离子被脱除,载铜有机相采用模拟铜电积废液反萃,经过2级逆流反萃,铜反萃率为97.1%。采用萃取-洗涤-反萃技术从湿法炼锌浸出液中回收铜,铜的总回收率为92.4%。  相似文献   

3.
采用Lix 984N对含杂质锌、砷、铁、锑的硫酸铜溶液进行了铜萃取分离和锌回收研究,解决了含多种杂质的硫酸铜溶液传统沉淀法存在的净化分离困难问题。研究结果表明,铜萃取分离采用3级萃取、1级洗涤和2级反萃,可得到锌、砷、铁、锑含量均低于2 mg/L的符合电积要求的硫酸铜溶液。萃余液采用Ca CO3预中和除去大部分砷、铁、锑,再用Na2CO3沉锌,得到含锌大于40%的高锌渣。  相似文献   

4.
氨性溶液中铜镍钴的萃取分离   总被引:10,自引:0,他引:10  
王成彦 《有色金属》2002,54(1):23-26
采用PT5050萃取剂,分离和富集镍矿氨液中的铜、镍、钴。采用2级萃取,溶液中铜、镍的萃取率可达99.5%以上,钴不被萃取,经3级低酸选择性反萃镍,镍的反萃率达99%以上,镍反萃液中铜含量小于0.001g/L,满足电镍生产要求。有机相经高酸(180g/L H2SO4)反萃铜,铜反萃液生产电铜或结晶硫酸铜。用硫化钠沉淀萃余液中的钴,钴的沉淀率大于96%,所得到的钴硫精矿含钴大于40%。  相似文献   

5.
从氨性溶液中萃取分离铜、钴的研究   总被引:8,自引:0,他引:8  
陈永强  邱定蕃  王成彦  尹飞  王忠 《矿冶》2003,12(3):61-63,45
研究了不同萃取剂从氨性溶液中分离铜、钴的过程。采用LIX984N作萃取剂,经一级萃取,溶液中铜的萃取率大于99%;用180g/L硫酸溶液对负载有机相进行反萃,经二级逆流反萃,铜的反萃率达99%以上。采用LIX54-100作萃取剂,经过四级逆流萃取铜的萃取率达到99 53%;用30g/L硫酸溶液对负载有机相进行反萃,经一级反萃,铜的反萃率大于99 9%。在上述萃取过程中,钴均不被萃取。  相似文献   

6.
为了降低铁对电积过程的影响, 对某铜湿法厂萃取各工序溶液性质及萃取剂ZJ988的萃取性能进行了研究, 结果表明, 降低萃取剂浓度可以减少铁的萃取量, 而由于萃取剂浓度降低造成的铜传递量的减小可以通过提高反萃酸度来弥补; 当洗涤参数为酸度10 g/L、铜浓度1.0 g/L以上、铁浓度小于2.0 g/L、相比0.8~1.0时, 铁洗涤效果较好。  相似文献   

7.
针对现有氯化物体系废蚀刻液中铜难以电解回收利用的现状,采用LIX984作为萃取剂,探索其对废蚀刻液中铜的萃取及反萃转型性能.系统考察了萃取剂浓度、料液酸度、萃取时间等对铜萃取的影响,硫酸浓度、反萃时间等对铜反萃的影响,绘制了萃取及反萃等温线并模拟了多级逆流过程。结果表明,采用LIX984萃取铜时,为确保铜萃取回收率,应将废蚀刻液稀释至铜浓度接近0.5mol/L或以下。铜131.24g/L、氯231.6g/L,pH=2.45的废蚀刻液稀释4倍后,可直接采用20%(体积分数)的LIX984按相比O/A=4/1、萃取时间10min、萃取温度25℃条件进行萃取,经过5级逆流萃取,铜萃取率为97.1%,氯萃取率仅0.05%。负载铜有机相采用200g/L的硫酸溶液,按照相比O/A=6/1、反萃时间5min、反萃温度25℃条件进行萃取,经过7级逆流反萃,铜反萃率为98.62%。得到的含铜47.16g/L、氯0.18g/L硫酸铜反萃液可直接用于电解回收,得到满足GB/T 467—1997中产品Cu-CATH2要求的金属铜。  相似文献   

8.
采用Lix984N—煤油—H2SO4萃取体系,从粗硫酸镍溶液中选择性回收铜,研究了初始pH值、萃取剂体积分数、相比O/A等对铜萃取的影响。结果表明,在初始pH值为2.4、萃取剂体积分数为25%、相比O/A为1∶1的条件下,经一级萃取即可获得铜萃取率为98.19%,镍萃取率仅为0.68%的良好指标。以H2SO4浓度为180 g/L溶液作反萃剂,在相比O/A为1∶1条件下经一级反萃,铜的反萃率为99.05%。铜以CuSO4溶液的形式回收,可以作为制备硫酸铜晶体或电积制备电解铜的原料。  相似文献   

9.
国外某难选氧化铜矿平均含铜6.91%,采用机械搅拌硫酸浸出,浸出溶液含铜高达30 g/L。针对该高浓度硫酸铜溶液,研究用萃取剂M5640萃取分离铜的工艺过程。结果表明,以M5640为萃取剂、铜电积废液为反萃剂,在合适的相比条件下,经5级萃取2级反萃,可以获得符合铜电积工艺要求的纯净硫酸铜溶液。  相似文献   

10.
以高浓度含锌废水为研究对象,研究采用溶剂萃取法回收锌的工艺技术.结果表明,用P204为萃取剂,在加入一定量中和剂的条件下,通过调整相比(O/A比)以及萃取剂浓度可实现锌的有效萃取,萃取率可达到99%以上,且杂质离子主要保留在萃余液中,萃取过程损失率很小.采用7.6%的硫酸溶液对负载有机相进行多级错流反萃可得到锌浓度高达150g/L以上的硫酸锌反萃液,实现了锌的浓缩,且反萃液中各杂质离子浓度都较低,锌浓度及杂质含量均可满足电积锌液的要求.该法既有效的回收了锌,又有效地分离了杂质.得到了高浓度、低杂质的优质电积锌液.  相似文献   

11.
吴展  李伟  陈志华  宁瑞 《矿冶工程》2013,33(2):105-107
采用高效萃取剂AD100从粗硫酸镍溶液中萃取回收金属铜, 考察了初始pH值、相比(A∶O)、萃取剂体积浓度、反应时间等因素对铜回收率的影响。实验结果显示, 在最优的条件下, 即: 初始pH值为2.0, 相比A∶O=3∶1, 萃取剂体积浓度为25%, 萃取时间5 min, 常温下一级萃取即可回收其中94%以上的铜, 铁、镍的萃取率分别低于0.05%和0.01%。对负载有机相进行反萃, 结果显示, 采用2 mol/L的硫酸在相比为1∶1的条件下一级反萃可回收95%的铜。  相似文献   

12.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

13.
研究了用N263从氯化物体系中萃取Zn2+、Fe2+和Fe3+,考察了振荡时间、萃取剂浓度、改性剂浓度、相比(O/A)、盐酸浓度对Zn2+、Fe2+和Fe3+萃取率的影响。结果表明,在有机相组成为20% N263+20%正己醇+60% 260#溶剂油、相比O/A=1 GA6FA 1、振荡时间5 min和25℃条件下,Zn2+、Fe2+和Fe3+的单级萃取率分别为90.97%、0.79%和75.85%,分离系数βZn2+/Fe2+和βZn2+/Fe3+分别为1 260和3.21。经过2级逆流萃取,水相中Zn2+浓度从9.61 g/L降至0.36 g/L,负载有机相采用0.5 mol/L H2SO4反萃,Zn2+的反萃率为41.86%,Fe3+的反萃率大于97%。N263萃取金属离子的机理是阴离子交换反应,计算了萃取反应相关的热力学函数值,结果表明,N263萃取Zn2+为放热反应,Fe3+的萃取反应为吸热反应,常温下Zn2+和Fe3+的萃取反应均可自发进行。   相似文献   

14.
在高铁生物浸铜液中通入H2S气体, 生成硫化铜渣, 双氧水-硫酸浸出硫化铜渣, 得到硫酸铜溶液, 后经蒸发浓缩、冷却结晶制得硫酸铜。研究结果表明: 当生物浸出液pH=1, 反应温度为30 ℃, 反应时间为3 h时, 在生物浸铜液中通入硫化氢, 铜沉淀率接近100%; 双氧水-硫酸浸出硫化铜渣, 当双氧水与铜物质的量之比为6.4∶1, 反应温度为50 ℃, 液固比为15∶1, 硫酸浓度为3 mol/L, 反应时间为2 h时, 铜浸出率为92.1%; 所得浸出液中硫酸浓度为343.49 g/L, Cu2+浓度为 25.33 g/L, 通过蒸发浓缩、冷却结晶得到纯度为96%的硫酸铜, 其质量达到工业用硫酸铜质量标准(GB437-93)。  相似文献   

15.
Mac10 铜萃取剂的性能研究   总被引:4,自引:0,他引:4  
采用国产化工原料合成了Mac10 铜萃取剂, 进行了萃取剂用量、有机相与无机相相比(O/A)、萃取平衡pH 值、萃取动力学、萃取热力学、反萃动力学试验、反萃剂酸度试验。结果表明, Mac10 铜萃取剂具有良好萃取性能, 当萃取剂用量为15%, 相比(O/A)为75%, 萃取平衡pH =3, 萃取时间为3 min, 萃取温度为298 K, 反萃取时间为2 min, 反萃取剂酸度为硫酸浓度180 g/L 时, 萃取率不小于93%, 反萃取率不小于96%, 且水相中Cu2+浓度愈高, Mac10 对铜的萃取性能愈好。  相似文献   

16.
酸浸-萃取法从炉渣中回收铜、锌的研究   总被引:2,自引:0,他引:2  
以硫酸-双氧水浸出低品位炉渣, 有效回收了铜和锌。分别进行了pH值、温度、双氧水用量对炉渣中铜锌浸出率的影响研究。研究结果表明:在常压条件下, 当pH=2.5, 浸出温度70 ℃, 双氧水用量150 L/t时, 炉渣中铜和锌的浸出率分别为54.77%和72.33%。用P204作萃取剂, 硫酸作反萃剂, 得到铜回收率为84.97%, 锌回收率为96.47%。  相似文献   

17.
The use of the guanidine extractant, LIX 7950, to extract copper cyanide from waste cyanide solution has been investigated. Copper extraction is favorable at low pH while a high cyanide to copper molar ratio tends to suppress copper loading. The extractant also strongly extracted zinc and nickel from cyanide solution, but the extraction of iron was poor. The presence of thiocyanate ion significantly depressed copper extraction, but thiosulfate ion produced negligible impact on copper extraction. The preferential extraction of metal cyanide species to free cyanide has been noticed. The potential application of the recovery technique as a pre-concentration step for the treatment of cyanide effluent has been suggested, by which copper can be extracted and concentrated into a small volume of solution and the barren cyanide solution recycled to the cyanidation process.  相似文献   

18.
针对Fe和Cu含量分别为2.158 g/L和0.730 g/L的含铜硫酸渣浸出液,采用氧化-中和水解除铁-硫化沉淀法回收其中的铜。对比了碳酸钠与石灰乳两种水解沉淀剂的除铁效果以及硫化钠与硫代硫酸钠两种沉铜剂的效果。最佳除铁条件为: 以碳酸钠为除铁水解沉淀剂、H2O2和铁离子摩尔比1.5、水解pH值4.0、水解温度85 ℃、水解时间3 h,最佳沉铜条件为: 硫化钠作为沉铜剂(用量为除铁后液中铜离子的等摩尔数)、沉淀pH值4.0、沉淀温度85 ℃、沉淀时间2 h。最佳工艺条件下,浸出液综合除铁率为92.98%、铜综合回收率为90.34%,沉淀得到铜品位为61.65%的硫化铜渣,可作为冶炼产品直接出售。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号