首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionophore-doped sensor membranes exhibit greater selectivities and wider measuring ranges when they are prepared with noncoordinating matrixes. Since fluorous phases are the least polar and least polarizable liquid phases known, a fluorous phase was used for this work as the membrane matrix for a series of ionophore-based sensors to explore the ultimate limit of selectivity. Fluorous pH electrode membranes, each comprised of perfluoroperhydrophenanthrene, sodium tetrakis[3,5-bis(perfluorohexyl)phenyl]borate, and one of four fluorophilic H(+)-selective ionophores were prepared. All the ionophores are highly fluorinated trialkylamines containing three electron withdrawing perfluoroalkyl groups shielded from the central nitrogen by alkyl spacers of varying lengths: [CF(3)(CF(2))(7)(CH(2))(3)](2)[CF(3)(CF(2))(6)CH(2)]N, [CF(3)(CF(2))(7)(CH(2))(3)](2)(CF(3)CH(2))N, [CF(3)(CF(2))(7)(CH(2))(3)](3)N, and [CF(3)(CF(2))(7)(CH(2))(5)](3)N. Their pKa values in the fluorous matrix are as high as 15.4 +/- 0.3, and the corresponding electrodes exhibit logarithmic selectivity coefficients for H(+) over K(+) as low as <-12.8. The pKa and selectivity follow the trends expected from the degree of shielding and the length of the perfluoroalkyl chains of the ionophores. These electrodes are the first fluorous ionophore-based sensors described in the literature. The selectivities of the sensor containing [CF(3)(CF(2))(7)(CH(2))(5)](3)N are not only greater than those of analogous sensors with nonfluorous membranes but were of the same magnitude as the best ionophore-based pH sensors ever reported.  相似文献   

2.
We report a novel approach for synthesizing inorganic nanoparticle/metal-organic frameworks (MOFs) heterostructured nanocomposites by self-assembly of MOFs on nanoparticles. This approach involves the synthesis of Au nanoparticles and preferential growth of [Cu(3)(btc)(2)](n) frameworks consisting of Cu(2+) ions and benzene-1,3,5-tricarboxylate (btc) on nanoparticles. Aggregates consisting of 11-mercaptoundecanoic acid (MUA)-stabilized Au nanoparticles linked by Cu(2+) ions were necessary for preferential self-assembly of [Cu(3)(btc)(2)](n) frameworks on the aggregates, resulting in the formation of Au nanoparticles/[Cu(3)(btc)(2)](n) nanocomposites. The present approach was confirmed to be applicable for other hybrids consisting of Au nanoparticles and tetragonal [Cu(2)(ndc)(2)(dabco)](n) frameworks.  相似文献   

3.
To delineate the complexity of the response of cells to nanoparticles we have performed a study on HT-29 human colon carcinoma cells exposed first to a fullerene derivative C(60)(OH)(20) and then to physiological copper ions. Our cell viability, proliferation, and intracellular reactive oxygen species (ROS) production assays clearly indicated that C(60)(OH)(20) suppressed cell damage as well as ROS production induced by copper, probably through neutralization of the metal ions by C(60)(OH)(20) in the extracellular space, as well as by adsorption and uptake of the nanoparticles surface-modified by the biomolecular species in the cell medium. This double-exposure study provides new data on the effects of nanoparticles on cell metabolism and may aid the treatment of oxidant-mediated diseases using nanomedicine.  相似文献   

4.
Tang Y  Jia Z  Jiang Y  Li L  Wang J 《Nanotechnology》2006,17(22):5686-5690
Nanobelts of nickel hydroxyl sulfate have been prepared on a large scale via a simple template-free hydrothermal reaction on the basis of a complex [Ni(NH(3))(6)](2+) formed with Ni(2+) and ammonia in an ethanol-water solution. The as-synthesized nanobelts were single crystals, with several tens of microns in length and 50-150?nm in width. The nanobelts were enclosed by top surfaces (100) and side surfaces (001) and their growth direction was parallel to [010]. The function of aqueous ammonia and ethanol was discussed. Furthermore, nanostructures of a mixture of crystralline NiO and amorphous nickel sulfate with various morphologies, such as nanobelts, porous nanobelts, and nanoparticles, were obtained by the thermal treatment of the as-synthesized Ni(SO(4))(0.3)(OH)(1.4) nanobelts at different temperatures.  相似文献   

5.
Four complexes are prepared and characterized having molecular formula [Zn(dab)(2)](NO(3))(2), [Cu(dab)(2)](NO(3))(2).H(2)O, [Ni(dab)(2)](NO(3))(2).2H(2)O and [Mn(dab)(2)](NO(3))(2), where dab: 1,4-diaminobutane. Thermolyses of these complexes were investigated by simultaneous thermogravimetry (TG), derivatives thermogravimetry (DTG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The kinetics of the thermolysis at early stages is investigated using isothermal TG by applying model-fitting and isoconversional method. Thermolytic process is slow in inert (N(2)) and is fast in air atmosphere due to oxidative nature. To investigate the response of these complexes under the condition of rapid heating, ignition delay (D(i)) has been measured. Thermal stability of the complexes was found to increase in the order Mn < Cu < Ni < Zn.  相似文献   

6.
Zhang J  Guo SX  Bond AM  Marken F 《Analytical chemistry》2004,76(13):3619-3629
Significant advantages of Fourier transformed large-amplitude ac higher (second to eighth) harmonics relative to responses obtained with conventional small-amplitude ac or dc cyclic voltammetric methods have been demonstrated with respect to (i) the suppression of capacitive background currents, (ii) the separation of the reversible reduction of [Ru(NH(3))(6)](3+) from the overlapping irreversible oxygen reduction process under conditions where aerobic oxygen remains present in the electrochemical cell, and (iii) the kinetic resolution of the reversible [Ru(NH(3))(6)](3+/2+) process in mixtures of [Fe(CN)(6)](3-) and [Ru(NH(3))(6)](3+) at appropriately treated boron-doped diamond electrodes, even when highly unfavorable [Fe(CN)(6)](3-) to [Ru(NH(3))(6)](3+) concentration ratios are employed. Theoretical support for the basis of kinetic discrimination in large-amplitude higher harmonic ac cyclic voltammetry is provided.  相似文献   

7.
Metal nitrate complexes of general formula [M(dah)(2)](NO(3))(2) (where M=Zn, Cu and Ni; dah=1,6-diaminohexane) have been prepared and characterized by elemental analysis, infrared spectroscopy (IR) and gravimetric method. The thermal decomposition has been studied using thermogravimetry (TG). Simultaneous thermogravimetry-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) and differential scanning calorimetry (DSC) were done in N(2) atmosphere. Isothermal TG of initial decomposition of all these complexes, have been carried out to evaluate the kinetics of early thermolysis. Both, model fitting and isoconversional method have been used for the evaluation of the kinetics of thermal decomposition. Model fitting method have given the single value of activation energy (E) whereas, isoconversional method yields a series of E-value, which vary with extent of conversion. Ignition of the complexes was measured to see the response towards rapid heating with varying amounts. The thermal stability of the complexes was found to be in the order as [Zn(dah)(2)](NO(3))(2)>[Cu(dah)(2)](NO(3))(2) approximately [Ni(dah)(2)](NO(3))(2).  相似文献   

8.
The effects of four types of fullerene compounds (C60, C60-OH, C60-COOH, C60-NH2) were examined on two model microorganisms (Escherichia coli W3110 and Shewanella oneidensis MR-1). Positively charged C60-NH2 at concentrations as low as 10 mg/L inhibited growth and reduced substrate uptake for both microorganisms. Scanning electron microscopy (SEM) revealed damage to cellular structures. Neutrally charged C60 and C60-OH had mild negative effects on S. oneidensis MR-1, whereas the negatively charged C60-COOH did not affect either microorganism's growth. The effect of fullerene compounds on global metabolism was further investigated using [3-13C]L-lactate isotopic labeling, which tracks perturbations to metabolic reaction rates in bacteria by examining the change in the isotopic labeling pattern in the resulting metabolites (often amino acids).1-3 The 13C isotopomer analysis from all fullerene-exposed cultures revealed no significant differences in isotopomer distributions from unstressed cells. This result indicates that microbial central metabolism is robust to environmental stress inflicted by fullerene nanoparticles. In addition, although C60-NH2 compounds caused mechanical stress on the cell wall or membrane, both S. oneidensis MR-1 and E. coli W3110 can efficiently alleviate such stress by cell aggregation and precipitation of the toxic nanoparticles. The results presented here favor the hypothesis that fullerenes cause more membrane stress 4-6 than perturbation to energy metabolism.7.  相似文献   

9.
Equilibrium study of ion-pair extraction of a cationic water-soluble porphyrin [5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin, H(2)tmpyp(4+)] and its metalloporphyrins (MP) into the acetonitrile layer, separated by addition of sodium chloride (4.00 mol dm(-)(3)) to a 1:1 (v/v) acetonitrile-water mixed solvent, was carried out to develop a new and useful method for the determination of a subnanogram amount of copper(II). M denotes Zn(2+), Cu(2+), Co(3+), Fe(3+), and Mn(3+), and P(2)(-) is porphyrinate ion. The extraction and dissociation constants of the ion-pair complexes, defined by K(ex) = [MP(ClO(4))(4)](org)[MP(4+)](aq)(-)(1)[ClO(4)(-)](aq)(-)(4), K(dis,1) = [MP(ClO(4))(3)(+)](org)[ClO(4)(-)](org)[MP(ClO(4))(4)](org)(-)(1), and K(dis,2) = [MP(ClO(4))(2)(2+)](org)[ClO(4)(-)](org)[MP(ClO(4))(3)(+)](org)(-)(1), were determined by taking into account the partition constant of sodium perchlorate (K(D) = 1.82 ± 0.01). The equilibrium constants were found to be K(ex)K(dis,1) = (7.2 ± 1.3) × 10(4), (6.4 ± 0.9) × 10(4), (1.35 ± 0.13) × 10(5), (4.8 ± 0.6) × 10(3), (1.23 ± 0.05) × 10(4), and (1.42 ± 0.07) × 10(3) at 25 °C for the free base porphyrin (H(2)tmpyp(4+)) and the metalloporphyrins of zinc(II), copper(II), cobalt(III), iron(III), and manganese(III), respectively. The K(dis,2) values were (2.9 ± 1.4) × 10(-)(2), (3.1 ± 1.1) × 10(-)(2), (8.0 ± 4.9) × 10(-)(3), and (5.1 ± 2.2) × 10(-)(2) for the free base porphyrins and the metalloporphyrins of zinc(II), copper(II), and cobalt(III), respectively. The results were developed for determination of a trace amount of copper(II) (3 × 10(-)(8)-4 × 10(-)(6) mol dm(-)(3)) in natural water samples using H(2)tmpyp(4+) with a molar absorptivity of 3.1 × 10(5) mol(-)(1) dm(3) cm(-)(1) at a precision of 1.3% (RSD). The determination of copper(II) was not interfered by the presence of 10(-)(4) mol dm(-)(3) of Mn(2+), Co(2+), Ni(2+), Hg(2+), Cd(2+), Ag(+), Cr(3+), V(5+), Al(3+), Mg(2+), Ca(2+), Br(-), I(-), SCN(-), and S(2)O(3)(2)(-) and 10(-)(5) mol dm(-)(3) of Fe(3+), Zn(2+), and Pd(2+).  相似文献   

10.
Mishra A  Jung H  Park JW  Kim HK  Kim H  Stang PJ  Chi KW 《Organometallics》2012,31(9):3519-3526
Two new and large molecular rectangles 4 and 5 were synthesized from two different arene-ruthenium [Ru(2)(μ-η(4)-C(2)O(4))(MeOH)(2)(η(6)-p-Pr(i)C(6)H(4)Me)(2)][O(3)SCF(3)](2) (2), and [Ru(2) (p-cymene)(2) (donq) (OH(2))(2)] [O(3)SCF(3)](2) (donq = 5,8-dioxydo-1,4-naphthaquinonato) (3) acceptors and a new unsymmetrical N-(4-(pyridin-4-ylethynyl)phenyl) isonicotinamide (1) donor ligand. X-ray crystallography of 4 confirmed a molecular rectangle. The (1)H NMR spectra of both rectangles 4 and 5 showed a mixture of two structural, head-to-tail (HTL) and head-to-head (HTH) type, isomers in a 1:1 ratio. The cytotoxicities of both rectangles have been established against Colo320 (colorectal cancer), A549 (lung cancer), MCF-7(breast cancer) and H1299 (lung cancer) human cancer cell lines. The cytotoxicity of rectangle 5 was found to be considerably stronger against all cancer cell lines than that of the reference drug cisplatin.  相似文献   

11.
Cyclic voltammetry experiments at minielectrodes exhibit less ohmic error for lower polarity solvents when the supporting electrolyte anion is [B(C(6)F(5))(4)](-) rather than one of the smaller traditional anions such as [BF(4)](-), [PF(6)](-), or [ClO(4)](-). Conductance measurements have been performed for [NBu(4)][B(C(6)F(5))(4)] in tetrahydrofuran, dichloromethane, benzotrifluoride, and acetonitrile and compared with results for [NBu(4)](+) salts of several traditional anions in the same solvents. In solvents with dielectric constants of 10 or less, ion association constants, K(A), are as much as 2 orders of magnitude lower with [B(C(6)F(5))(4)](-), TFAB, as the electrolyte anion and the degree of this lowering is related to the acceptor property of the solvent. Analyses carried out on the basis of a Fuoss model attribute this fact to differences in concentrations of contact ion pairs rather than of solvent-separated ion pairs. The greater dissociation of the TFAB ion is attributed to its highly delocalized charge.  相似文献   

12.
Zinc oxide (ZnO) nanoparticles were synthesized by a reaction between an aqueous-alcoholic solution of zinc nitrate and sodium hydroxide under ultrasonic irradiation at room temperature. The morphology, optical properties of the ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The [60]fullerene and zinc oxide nanocomposite were synthesized in an electric furnace at 700 degrees C for two hours. The [60]fullerene-ZnO nanocomposite was characterized by XRD, SEM and TEM. In addition, the [60]fullerene-ZnO nanocomposite was investigated as a catalyst in the photocatalytic degradation of organic dyes using UV-vis spectroscopy. The photocatalytic activity of the [60]fullerene-ZnO nanocomposite was compared with that of ZnO nanoparticles, heated ZnO nanoparticles after synthesis, pure [60]fullerene, and heated pure [60]fullerene in organic dyes such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 254 nm.  相似文献   

13.
Wei P  Zhang L  Lu Y  Man N  Wen L 《Nanotechnology》2010,21(49):495101
Autophagy, an evolutionally conserved intracellular process degrading cytoplasmic proteins and organelles for recycling, has become one of the most remarkable strategies applied in cancer research. The fullerene C60 nanoparticle (nC60) has been shown to induce autophagy and sensitize chemotherapeutic killing of cancer cells, but the details still remain unknown. Here we show that a water-dispersed nanoparticle solution of derivatized fullerene C60, C60(Nd) nanoparticles (nC60(Nd)), has greater potential in inducing autophagy and sensitizing chemotherapeutic killing of both normal and drug-resistant cancer cells than nC60 does in an autophagy-dependent fashion. Additionally we further demonstrated that autophagy induced by nC60/C60(Nd) and Rapamycin had completely different roles in cancer chemotherapy. Our results, for the first time, revealed a novel and more potent derivative of the C60 nanoparticle in enhancing the cytotoxicity of chemotherapeutic agents and reducing drug resistance through autophagy modulation, which may ultimately lead to novel therapeutic strategies in cancer therapy.  相似文献   

14.
Reaction of Fe(2)(SH)(2)(CO)(6) and HCHO, which gives Fe(2)[(SCH(2))(2)NH](CO)(6) in the presence of NH(3), affords the possible intermediate Fe(2)(SCH(2)OH)(2)(CO)(6), which has been characterized crystallographically as its axial-equatorial isomer. Fe(2)(SCH(2)OH)(2)(CO)(6) was shown to react with ammonia and amines to give Fe(2)[(SCH(2))(2)NR](CO)(6) (R = H, alkyl). Related hemithioacetal intermediates were generated by treatment of Fe(2)(SH)(2)(CO)(6) with RC(O)C(O)R (R = H, Ph, 4-F-C(6)H(4)) to give cycloadducts. The benzil derivative Fe(2)[S(2)C(2)(OH)(2)Ph(2)](CO)(6), a C(2)-symmetric species, was also characterized crystallographically. The acylated azadithiolate Fe(2)[(SCH(2))(2)NAc](CO)(6) was prepared by reaction of Li(2)Fe(2)S(2)(CO)(6) with (ClCH(2))(2)NC(O)Me. DNMR experiments show that the free energies of activation for rotation of the amide bond are the same for Fe(2)[(SCH(2))(2)NAc](CO)(6) and Fe(2)[(SCH(2))(2)NAc](CO)(4)(PMe(3))(2), which implies that the ligands on the iron centers do not strongly affect the basicity of the nitrogen. As a control, we showed that the thioamide Fe(2)[(SCH(2))(2)NC(S)Me](CO)(6) does exhibit a significantly higher barrier to rotation, attributable to the increased double-bond character of the N-C(S) bond.  相似文献   

15.
Two exceedingly stable [Ru(bipy)(3)](3+) reagents were prepared by dissolving either [Ru(bipy)(3)](ClO(4))(2) in acetonitrile (containing 0.05 M HClO(4)) or [Ru(bipy)(3)]Cl(2)·6H(2)O in 95:5 glacial acetic acid-acetic anhydride (containing 0.05 M H(2)SO(4)) followed by oxidation with PbO(2). These conveniently prepared solutions provide highly reproducible chemiluminescence detection over long periods of analysis, avoiding the need for recalibration or preparation of fresh reagent solutions and without the complications associated with online chemical or electrochemical oxidations. The reagent prepared in acetonitrile produced much greater signal intensities with a range of analytes and was deemed most suitable for high-performance liquid chromatography (HPLC) with postcolumn chemiluminescence detection.  相似文献   

16.
This study provides a parallel cytotoxicity study of water-soluble single-walled carbon nanotubes and fullerene C70(C(COOH)2)4-8 on Nicotiana tabacum BY-2 cells. After BY-2 cells were treated with single-walled carbon nanotubes or C70(C(COOH)2)4-8, the cells adopted a shrunken morphology and exhibited lower proliferation rate. Fluorescence imaging of the treated cells revealed increased reactive oxygen species generation, abnormal mitochondrial distribution, decreased mitochondrial activity, and impaired actin cytoskeleton arrangement. However, no obvious cells death was induced by either single-walled carbon nanotubes or C70(C(COOH)2)4-8. Compared with single-walled carbon nanotubes, C70(C(COOH)2)4-8 exerted more serious adverse effects on BY-2 cells.  相似文献   

17.
Intracellular drug delivery of layered double hydroxide (LDH) nanocarriers have been examined in human osteosarcoma Saos-2 cell culture line by both electron and confocal microscopies. For transmission electron microsopic (TEM) study, LDHs and anticancer drug, methotrexate (MTX) loaded LDHs were synthesized and the particle size was controlled. From the scanning electron microscopic (SEM) studies, morphologies of LDH nanoparticle and its MTX intercalated form were proven to be platelike hexagonal with an average size of approximately 150 nm. In order to understand the cellular penetration behavior, both nanoparticles were treated to human osteosarcoma Saos-2 cell culture lines and the cellular uptake pattern with respect to incubation time was observed by TEM and SEM. We observed that the nanoparticles are attached at the cellular membrane at first and then internalized into the cells via endocytosis within 1 h. Then are located in the intracellular vacuole (endosome). In order to examine the intracellular drug delivery mechanism of LDH nanoparticles, fluorescein 5-isothiocyanate (FITC) labeled MTX was intercalated into LDH and treated on Saos-2 cells. Laser scanning confocal microscopic studies revealed that the FITC-MTX molecules were first internalized with LDH nanocarriers via endocytosis, and located in endosome to deliver loaded drug to target cellular organ. It was, therefore, concluded that LDH could play a role as drug delivery nanocarriers.  相似文献   

18.
To investigate the relationship between the size and structure of TiO(2) nanoparticles, three size-selected samples of TiO(2) nanoparticles were prepared via a hydrolysis method that uses Ti[OCH(CH(3))(2)](4) as the starting material. The structures of the nanoparticles were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Analysis of the XRD patterns and of the TEM images showed that the samples were dispersed, with an average particle size of approximately 30 nm (sample A), approximately 12 nm (sample B), and approximately 7 nm (sample C). Their X-ray absorption spectra indicate that samples A and B have an anatase structure, whereas sample C has a structure very similar to that of the TiO( 2) II phase, which generally arises only under high-pressure conditions. This difference can be attributed to size-induced radial pressure within the smaller nanoparticles, which plays an important role in the phase of TiO(2) nanoparticles in sample C.  相似文献   

19.
A porphyrin-linked fullerene derivative, which included COOH groups in its fullerene unit, Por-C60(COOH) was synthesized in order to investigate the possibility of promoting the photosensitization of TiO2. Por-C60(COOH) molecules produced higher photocurrent per molecule than tetrakis(4-carboxyphenyl)-porphyrin molecules. A dye-sensitized solar cell using Por-C60(COOH), in which a C60 unit was introduced between the porphyrin unit and TiO2, yielded an improvement in energy conversion for light collection.  相似文献   

20.
Chen LQ  Xiao SJ  Hu PP  Peng L  Ma J  Luo LF  Li YF  Huang CZ 《Analytical chemistry》2012,84(7):3099-3110
Although nanoparticles have been widely used as optical contrasts for cell imaging, the complicated prefunctionalized steps and low labeling efficiency of nanoprobes greatly inhibit their applications in cellular protein imaging. In this study, we developed a novel and general strategy that employs an aptamer not only as a recognizer for protein recognition but also as a linker for nanoreporter targeting to specifically label membrane proteins of interest and track their endocytic pathway. With this strategy, three kinds of nanoparticles, including gold nanoparticles, silver nanoparticles, and quantum dots (QDs), have been successfully targeted to the membrane proteins of interest, such as nucleolin or prion protein (PrP(C)). The following investigations on the subcellular distribution with fluorescent immunocolocalization assay indicated that PrP(C)-aptamer-QD complexes most likely internalized into cytoplasm through a classical clathrin-dependent/receptor-mediated pathway. Further single-particle tracking and trajectory analysis demonstrated that PrP(C)-aptamer-QD complexes exhibited a complex dynamic process, which involved three types of movements, including membrane diffusion, vesicle transportation, and confined diffusion, and all types of these movements were associated with distinct phases of PrP(C) endocytosis. Compared with traditional multilayer methods, our proposed aptamer-mediated strategy is simple in procedure, avoiding any complicated probe premodification and purification. In particular, the new double-color labeling strategy is unique and significant due to its superior advantages of targeting two signal reporters simultaneously in a single protein using only one aptamer. What is more important, we have constructed a general and versatile aptamer-mediated protein labeling nanoplatform that has shown great promise for future biomedical labeling and intracellular protein dynamic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号