首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用均相沉淀法和燃烧合成法制备了不同粒径的粉体材料Y2O3:Eu3+,着重研究了样品的红外光谱,探讨了纳米晶Y2O3:Eu3+与同质微米材料相比的微观结构的变化.研究发现,波数位于563 cm-1的Y(Eu)—O键的吸收峰校正高度和面积对于纳米级粒径的粉体材料随着颗粒的减小而减小,而对于同质微米材料却相反.经分析认为:Y(Eu)—O键的吸收峰校正高度和面积由Y(Eu)—O键的平均键长和Y(Eu)—O键振动态数目这两个因素决定.对于微米粉体Y(Eu)—O键长的变化起主要作用,而对于纳米粉体由于不饱和键和悬空键的形成,Y(Eu)—O键振动态数目的变化起主要作用.  相似文献   

3.
We have successfully fabricated the S doped Y(OH)3 nanobelts with 15-30 microm in length and 50-300 nm in width and S doped Y(OH)3:Eu3+ nanobelts with 4-15 microm in length and 80-500 nm in width (most between 100 and 200 nm) via a similar process for preparation of Y(OH)3 nanotubes. Photoluminescent (PL) nanobelts of S doped Y2O3:Eu3+ were obtained through dehydration of the S doped Y(OH)3:Eu3+ nanobelts at 450 degrees C in N2. The PL properties of the S doped Y2O3:Eu3+ nanobelts have been studied and evidenced that we have successfully synthesized functional S doped Y2O3:Eu3+ nanobelts with interesting photoluminescence properties.  相似文献   

4.
郑锦丽  葛红光  马书婷  李宗林  郭少波  史娟  欧婷 《功能材料》2022,53(1):1064-1071+1076
采用溶剂热法制备磁性Fe3O4粒子。碱性条件下,以Fe3O4为核采用Stober法和溶胶-凝胶法在其表面依次包覆SiO2和介孔(m)TiO2,通过3-氨丙基三甲氧基硅烷(APTES)对其表面修饰后,采用乙二醇的多羟基还原性,将Pt原位还原负载在Fe3O4@SiO2@mTiO2表面合成核壳型磁性纳米复合材料Fe3O4@SiO2@mTiO2@Pt。通过透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、紫外可见分光光度计(UV-Vis)、振动样品磁强计(VSM)及X射线光电子能谱分析仪(XPS)对样品的微观形貌、结构、磁性、元素组成等进行表征。以对硝基苯酚(4-NP)和罗丹明6G为目标污染物,研究Fe3O4@SiO2@m...  相似文献   

5.
Eu(3+) co-doped Y(2)O(3):Tb nanoparticles were prepared by the combustion method and characterized for their structural and luminescence properties as a function of annealing temperatures and relative concentration of Eu(3+) and Tb(3+) ions. For Y(2)O(3):Eu,Tb nanoparticles annealed at 600 and 1200?°C, variation in the relative intensity of excitation transitions between the (7)F(6) ground state and low spin and high spin 4f(7)5d(1) excited states of Tb(3+) is explained due to the combined effect of distortion around Y(3+)/Tb(3+) in YO(6)/TbO(6) polyhedra and the size of the nanoparticles. Increase in relative intensity of the 285?nm peak (spin-allowed transition denoted as peak B) with respect to the 310?nm peak (spin-forbidden transition denoted as peak A) with decrease of Tb(3+) concentration in the Y(2)O(3):Eu,Tb nanoparticles heated at 1200?°C is explained based on two competing effects, namely energy transfer from Tb(3+) to Eu(3+) ions and quenching among the Tb(3+) ions. Back energy transfer from Tb(3+) to Eu(3+) in these nanoparticles is found to be very poor.  相似文献   

6.
In this work, the cubic compound Y2O3:Eu(3+) nanotubes with diameter of 70-90 nm and length of 2-3 microm are synthesized by a hydrothermal method. Photoluminescence and Raman spectra of Y2O3:Eu(3+) nanotubes in a diamond anvil cell under high pressure are measured at room temperature. The 5D0 --> 7F(0,1,2) transitions of the Eu(3+) ions exhibit red shifts to higher wavelength with pressure increasing. Above 13.4 GPa, all the Raman active modes disappear. When the pressure is released from 25.6 GPa to ambient pressure, these Raman peaks are not retrieved; this fact indicates that the nanotubes are transformed into amorphous from cubic phase at about 13.4 GPa. It may be related to the collapse of nanotube form under high pressure condition.  相似文献   

7.
In this paper, we describe the synthesis and characterization of a luminomagnetic microspheres with core-shell structures (denoted as Fe3O4@ SiO2 @SiO2-Tb(PABA)3). The luminomagnetic microspheres were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and photoluminescence spectrophotometer (PL). The SEM observation shows that the microsphere consists of the magnetic core with about 400 nm in average diameter and silica shell doped with terbium complex with an average thickness of about 90 nm. It has a saturation magnetization of 15.8 emu/g and a negligible coercivity at room temperature and exhibits strong green emission peak from 5D4 --> 7F5 transition of Tb3+ ions. The luminomagnetic microspheres with good magnetic response and fluorescence probe property as well as water-dispersibility would have potential medical applications, such as time-resolved fluoroimmunoassay (TR-FIA), fluorescent imaging, and magnetic resonance imaging (MRI).  相似文献   

8.
Lü Q  Li A  Guo F  Sun L  Zhao L 《Nanotechnology》2008,19(20):205704
In order to improve the photoluminescence property of Eu(3+)-doped nanoparticles, Y(2)O(3):Eu(3+) nanoparticles were synthesized using the Pechini-type sol-gel method, then coated with SiO(2) shells by using the St?ber method for different coating times. The SiO(2)-coated nanoparticles were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy, and their photoluminescence spectra were recorded under 800?nm femtosecond laser excitation. The results indicate that a two-photon simultaneous absorption upconversion luminescence is obtained, and their upconversion luminescence intensities are further enhanced after the surfaces of the nanoparticles are coated with different thickness SiO(2) shells. Compared to the upconversion luminescence intensity of non-coated nanoparticles at 611?nm, the upconversion luminescence intensities of SiO(2)-coated Y(2)O(3):Eu(3+) nanoparticles with coating times of 60, 90 and 120?min were enhanced by 3.30, 3.96 and 4.13 times, respectively. This can be attributed to the contributions of the increased amounts of Eu(3+) ions populated at the (5)D(0) level on the surfaces of the nanoparticles because the cooperative ligand fields between the Y(2)O(3) core and non-crystalline SiO(2) shell interfaces activate the 'dormant' Eu(3+) ions near or on the surfaces of the nanoparticles. From a Judd-Ofelt (J-O) theory analysis, the coated shell structures can improve the radiative quantum efficiencies of Eu(3+)-doped nanoparticles. It is therefore concluded that more intense red upconversion luminescence with high radiative quantum efficiencies can enable the SiO(2)-coated Y(2)O(3):Eu(3+) nanoparticles to have the great potential to be used as a fine resolution phosphor.  相似文献   

9.
Electroluminescence of Y2O3:Eu and Y2O3:Sm films, as well as the films coactivated with Eu and Sm, is studied. The electroluminescence spectra are measured. The physical mechanism of electroluminescence is analyzed It is shown that the increase in the heat treatment temperature and the content of doping impurities of the films enhances the intensity of electroluminescence. Additional doping of Y2O3:EuF3 films by the SmF3 impurity, practically does not influence the emission spectrum.  相似文献   

10.
Darbandi M  Hoheisel W  Nann T 《Nanotechnology》2006,17(16):4168-4173
We propose an approach for silica encapsulation of YV((0.7))P((0.3))O(4):Eu(3+), Bi(3+) nanophosphors through a microemulsion process. The resulting YV((0.7))P((0.3))O(4):Eu(3+), Bi(3+)@SiO(2) core-shell nanophosphors were characterized by transmission electron microscopy, UV/vis absorption and photoluminescence spectroscopy, energy-dispersive x-ray analysis (EDAX), selected area electron diffraction and zeta-potential measurements. The obtained nanocomposites have quite a uniform spherical shape and diameters of about 15?nm. Zeta-potential measurements show that coated particles are stable at high volume fractions and can endure large variations in pH and electrolyte concentration without coalescence. These core-shell nanophosphors could also be used as ultrasensitive biological labels, because they are obtained in nanoscale and well dispersible in water.  相似文献   

11.
Nanoparticles of Eu(3+) doped Y(2)O(3) (core) and Eu(3+) doped Y(2)O(3) covered with Y(2)O(3) shell (core-shell) are prepared by urea hydrolysis for 3?h in ethylene glycol medium at a relatively low temperature of 140?°C, followed by heating at 500 and 900?°C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18?nm for 500 and 900?°C heated samples respectively. Based on the luminescence studies of 500 and 900?°C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu(3+) emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu(3+) concentration of 4-5?at.%. A luminescence study establishes that the Eu(3+) environment in amorphous Y (OH)(3) is different from that in crystalline Y(2)O(3). For a fixed concentration of Eu(3+) doping, there is a reduction in Eu(3+) emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu(3+) increases with increase of crystallinity.  相似文献   

12.
Ghilane J  Fan FR  Bard AJ  Dunwoody N 《Nano letters》2007,7(5):1406-1412
We report in this paper a facile approach for the formation and electrochemical characterization of silver-silver oxide core-shell nanoparticles (NPs). Thus, thermal treatment at temperatures between 200 and 360 degrees C of Ag NP, in the gas phase or in an organic solvent, has been used to achieve the formation Ag@Ag2O NP. The evidence of formation of such a core-shell structure was obtained by cyclic voltammetry using a Nafion modified electrode (where Nafion containing carbon particles is used as the matrix to encapsulate the core-shell NP). Initial positive scans measure free Ag. Initial negative scans measure Ag2O, with the following positive scan, compared to the initial one, providing a measure of "trapped" or core Ag. The results presented demonstrate the utility of this approach in characterizing core-shell structures, like Ag@Ag2O, which could be extended to other core-shell forms, such as bimetallic core-shell NP.  相似文献   

13.
(Y,Gd)2O3:Eu(YGO:Eu)纳米粉体合成及透明陶瓷制备   总被引:1,自引:0,他引:1  
研究以碳酸氢铵作为沉淀剂制备Y1.34Gd0.6Eu0.06O3(YGO:Eu)纳米粉体的工艺,并采用真空烧结制备了YGO:Eu透明陶瓷.实验结果表明:以硝酸盐为母盐,以碳酸氢铵为沉淀剂,在本研究试验条件下获得的YGO先驱物为晶态的水合稀土碳酸钇钆正盐.先驱物在600℃煅烧后可以得到立方晶型的YGO粉体.煅烧温度对粉体的颗粒尺寸及尺寸分布有影响,1100℃煅烧所获得的粉体由粒径-100nm的球形颗粒组成,颗粒尺寸分布均匀,粉体具有较好的烧结性能.采用所制备的YGO:Eu纳米粉体,在1670℃真空烧结2h可获得透光性良好的透明陶瓷,样品在可见光区的最高透过率可达74.6%,高于相同工艺条件下制备的氧化钇透明陶瓷.  相似文献   

14.
Y2O3 rods 100 to 200 nm in diameter and 10 to 20 m in length are accessible via polyol-mediated synthesis of a precursor material with similar shape. By heating of Y(CH3COO)3 · xH2O and a defined amount of water at 190°C in diethylene glycol, the rod-like precursor material is formed. Infrared spectroscopy (IR), differential thermal analysis (DTA) and thermal gravimetry (TG) evidence that this precursor material still contains acetate. However, the precursor material can be transformed to Y2O3 by sintering at 600°C without destruction of the rod-like shape. According to X-ray powder diffraction analysis, the rods are well crystallized. They can be assumed to be with [100] orientation. By doping with Eu3+ (5 mol%), red emitting phosphor rods can be realized. With optical spectroscopy the typical line emission of Eu3+ is observed. Diffuse reflectance of Y2O3:Eu3+ rods is determined to be higher than 95% in the visible. While exciting at 254 nm (Hg-discharge), a quantum efficiency of 38.5% is proven for the prepared Y2O3:Eu3+ rods.  相似文献   

15.
Highly luminescent LaPO4:Eu3+/LaPO4 one-dimensional (1D) core/shell heterostructures were successfully synthesized by a mild and simple self-aggregation process under refluxing or hydrothermal conditions. The resulting 1D core/shell heterostructures were characterized using a variety of techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) to demonstrate successful coating by the crystalline LaPO4. In addition, a possible formation mechanism for this core/shell heterostructure was proposed. Finally, the photoluminescence property of the LaPO4:Eu3+/LaPO4 1D core/shell heterostructures was investigated in detail, which illustrates that the core/shell heterostructures remarkably increase the luminescence efficiency because the LaPO4 shells effectively eliminate surface trap-states and suppress the energy quenching in the energy-transfer processes.  相似文献   

16.
In this paper, a two-step synthesis method for preparing Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals is introduced. Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals were prepared by combining an autocombustion process with a low temperature solid state reaction. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) and fluorescence decay were employed to characterize the prepared samples. The results of XRD, TEM and EDS indicated that the products prepared by this method were not a mixture of Y2O3:Eu3+ and YOF:Eu3+ nanocrystals, but Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals. Compared with Y2O3:Eu3+ nanocrystals, a 20% increment in luminescence intensity was observed in the Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals, thus suggesting that coating with a YOF:Eu3+-shell can efficiently block the nonradiative relaxation channels that are induced by surface defect states.  相似文献   

17.
Nowadays much effort has been devoted to exploring novel luminescent materials with low-cost, high stability and excellent luminescent properties. In this paper, a new kind of luminescent material BPO4@B2O3 was prepared by using a facile method. The as-obtained samples contain numerous BPO4 nanoparticles enclosed by amorphous and crystalline B2O3 homogeneously, which exhibits a broad emission band ranging from 380 to 700 nm under near-UV irradiation. More importantly, it is worth noting that the BPO4@B2O3 phosphor exhibits the excellent thermal quenching property, which endows it with a promising prospect as phosphors for high power white LEDs. To further promote its application as white light phosphors, Eu3+ ions were doped into the BPO4@B2O3 samples and prepared the (BPO4@B2O3):Eu3+ phosphors with chromaticity coordinates (0.3022, 0.3122). The corresponding packaging of LEDs indicates that both BPO4@B2O3 and (BPO4@B2O3):Eu3+ can be considered as the promising phosphors for WLEDs.  相似文献   

18.
19.
《Optical Materials》2010,32(12):1815-1818
Polycrystalline Eu2+ and Dy3+ doped barium aluminate materials, BaAl2O4:Eu2+,Dy3+, were prepared with solid state reactions at temperatures between 700 and 1500 °C. The influence of the thermal treatments on the stability, homogeneity and structure as well as to the UV-excited and persistent luminescence of the materials was investigated by X-ray powder diffraction, SEM imaging and infrared spectroscopies as well as by steady state luminescence spectroscopy and persistent luminescence decay curves, respectively. The IR spectra of the materials prepared at 250, 700, and 1500 °C follow the formation of BaAl2O4 composition whereas the X-ray powder diffraction of compounds revealed how the hexagonal structure was obtained. The morphology of the materials at high temperatures indicated important aggregation due to sintering. The luminescence decay of the quite narrow Eu2+ band at ca. 500 nm shows the presence of persistent luminescence after UV irradiation. The dopant (Eu2+) and co-dopant (Dy3+) concentrations affect the crystallinity and luminescence properties of the materials.  相似文献   

20.
Europium-doped yttrium oxide (Y2O3:Eu) is a well-known luminescent material that in recent years has been studied in thin-film form. However, to date there has not been a great effort put into altering the nanostructure of these films. A thin-film deposition technique called glancing angle deposition allows for a high degree of control over the nanostructure of the thin film, resulting in thin films with nanostructure geometries ranging from chevron and post to helix. Glancing-angle deposition was used to make europium-doped yttrium oxide thin films with slanted-post nanostructures. Portions of the films were annealed in air at 850 degrees C for 10 hours following deposition. Scanning electron microscopy was used to characterize the nanostructures of the films, while UV laser excitation was used to characterize the photoluminescence properties of the films. The annealed samples exhibited increased photoluminescent responses compared to unannealed samples; however, the porous nanoscale geometry of the films was unaffected. In order to optimize the photoluminescence properties of the films, both the partial pressure of oxygen during film deposition and the level of europium doping in the source material used were varied. Films fabricated from the source material with a greater amount of europium doping had larger photoluminescent responses, while the optimal partial pressure of oxygen during electron-beam evaporation was found to be less than 1.0 x 10(-4) torr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号