首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three polymorphs of titania (anatase, rutile and brookite) have been obtained as nanoparticles selectively and with well definite morphologies (platelets of brookite, rods of rutile) by thermohydrolysis of TiCl4 in concentrated aqueous nitric acid. The selectivity of the synthesis depends strongly on the acidity of the medium. The presence of concentrated nitrate ions seems to be the determining factor for the formation of brookite and its stabilization against recrystallization.  相似文献   

2.
TiO2纳米晶溶胶水热的合成及其染料敏化光电性能   总被引:1,自引:0,他引:1  
以异丙醇钛为前驱体,采用溶胶水热方法合成了TiO2纳米晶. 采用XRD和TEM等测试技术研究了合成条件对TiO2纳米晶的晶粒度、结晶度以及相转变的影响规律. 研究显示,通过控制前驱液的预热处理、水热温度及前驱液浓度等条件,实现了对TiO2纳米晶的晶型、结晶度、晶粒度 (10~20nm 到120nm) 的稳定调控. 采用优化实验条件后得到的TiO2纳米晶的水性浆料,使用精确控制膜厚的涂布技术,制作成染料敏化太阳电池 (Dye-Sensitized Solar Cells, DSSC).由于制备的TiO2纳米晶具有纯锐钛矿晶型、合适的晶粒大小和良好的结晶性,使DSSC的光电转换效率达到了7.33%,高于同样实验条件下以P25或商业TiO2浆料制作的DSSC的光电转换效率.  相似文献   

3.
采用强碱性水热处理法分别控制第一次水热反应为160℃和200℃,制备出一维纳米管和纳米棒2种形貌的产物,将其作为第二次水热反应的前驱体,考察了第二次水热体系中pH值和温度对TiO2纳米材料的晶相组成及其微观形貌的影响;采用XRD、TEM以及HRTEM对样品进行了分析.结果表明,当以纳米管为前驱体时,除在pH=0的体系中得到了以金红石相为主的单晶纳米棒外,在pH值为2、4和7的条件下均得到了单晶纯锐钛矿相TiO2纳米颗粒.当以纳米棒为前驱体时,在pH=0的体系中得到了金红石相与板钛矿相共存的纳米棒和纳米颗粒混合产物;在pH值为2、4和7的条件下均得到了纯锐钛矿相TiO2纳米棒;当二次水热温度低于180℃时,前驱体没有转化完全,所得产物为前驱体与锐钛矿相TiO2共存的纳米棒;当水热温度为180℃和210℃时,产物为纯锐钛矿相纳米棒.  相似文献   

4.
Nitrogen-doped titania nanoparticles consisting of pure anatase, pure rutile and bicrystallites (anatase+rutile and anatase+brookite) have been prepared in TiCl(3)-HMT (hexamethylene tetramine)-alcohol solution under solvothermal process. The effect of the solvent type and amount of HMT as pH adjuster on the phase composition of titania and its visible photocatalytic activity for degradation to MO (methyl orange) was investigated. It is found that anatase gradually transferred to rutile with increase of carbon chain using methanol, ethanol, 1-propanol and 1-butanol as solvent. The pure anatase formed at the pH value of 1-2, while bicrystalline titania (anatase+rutile and anatase+brookite) at that of 7-10 in the presence of methanol. The bicrystalline (anatase+brookite) titania have the best visible photocatalytic activity among all the samples. The -(NO) and -(NH) dopants with an N (1s) binding energy of 400 eV may have positive effects on the visible light photocatalytic activity.  相似文献   

5.
以成本低廉的偏钛酸和浓硫酸为起始反应物,采用水热合成法进行了纳米金红石型TiO2的合成研究.研究了制备过程中浓硫酸对偏钛酸的溶解情况,以及水热反应的pH值对TiO2晶型转变的影响.结果表明:只有当偏钛酸完全溶解,并且水热反应时的pH小于等于0.4时,才能制得纯相的金红石型TiO2.  相似文献   

6.
多元酸修饰剂对水热法制备金红石型TiO2纳米棒的影响   总被引:3,自引:0,他引:3  
采用偏钛酸和浓硫酸为原料制备TiOSO4溶液,采用碳酸钠水解,多元酸为表面修饰剂,进行了粒径可控的金红石型TiO2纳米棒的水热合成研究.并用X射线粉末衍射仪(XRD)和透射电子显微镜(TEM)对制得的样品进行表征.结果表明:多元酸修饰剂的加入对TiO2纳米棒的尺寸大小及尺寸分布影响很大,并对修饰剂的作用机理进行了讨论,修饰剂的位阻效应、羧基的络合作用及TiO2微晶表面的疏水性对TiO2纳米棒的大小和分布起着重要作用.  相似文献   

7.
不同晶型纳米TiO2的溶剂热合成及其光催化活性研究   总被引:3,自引:0,他引:3  
采用不同的醇溶剂,以六亚甲基四胺为沉淀剂,以TICl3为前驱体,通过溶剂热的方法控制合成出纳米级的锐钛矿型、金红石型和板钛矿型的二氧化钛.通过XRD、TEM、UV-Vis光谱和XPS能谱对其进行了表征,研究了醇的种类、六亚甲基四胺的量对二氧化钛相组成及光催化性能的影响.结果发现,以甲醇为溶剂,酸性条件有利于生成锐钛矿相,碱性条件有利于生成金红石相和板钛矿相.溶剂热条件下可以得到氮掺杂的TiO2-xNx.光催化降解甲基橙活性结果表明锐钛矿和板钛矿混晶具有最好的光催化活性.  相似文献   

8.
《Materials Letters》2007,61(23-24):4610-4613
In this paper, we report hydrothermal synthesis of titania nanostructure with tunable phase and shape in the presence of methylcellulose (MC) and NaCl. As determined by X-ray diffraction, and scanning electron microscopy, nanosized flower-like rutile titania (nanorod aggregates) was obtained without the presence of MC. While MC was added, the assembled spheres of bicrystalline (brookite and rutile) titania nanoparticles was produced, and the bicrystalline titania with a brookite fraction in the range of 0–49.2% was prepared by changing the MC concentration. The mechanisms of bicrystalline phase formation were also briefly discussed.  相似文献   

9.
Titania particles having anatase, brookite and rutile phase were prepared at various H+/TTIP (Titaniumtetraisopropoxide) mole ratios and room temperature by the sol-gel method. The crystalline phases according to the variation of the post heat treatment temperature were observed. The crystalline phase and the phase transformation, morphology, and crystallite size were identified by using XRD, TG/DTA, Raman spectroscopy and TEM. The brookite phase of titania particles prepared at the H+/TTIP mole ratio of 0.02 and room temperature was not transformed into anatase or rutile even with the heat treatment at 750°C, and also the anatase phase was stable at the temperature as high as 850°C. However, the titania particles prepared at the H+/TTIP mole ratio of 0.67, which contained the mixed phases of anatase, brookite, and rutile at room temperature, showed only rutile phase at temperature of 750°C. It was thus shown that the initial crystalline phase of the primary particles prepared at room temperature had an important effect on the phase transformation behavior upon post heating. Phase transformation from brookite to anatase and subsequently to rutile occurred with heating.  相似文献   

10.
Peng W  Yanagida M  Han L  Ahmed S 《Nanotechnology》2011,22(27):275709
We present a straightforward procedure to prepare composite photoanodes which consisted of TiO2 rutile nanorods/anatase nanoparticles synthesized under hydrothermal conditions, with the ratio of rutile to anatase controlled simply by adjusting the volume of nitric acid. The as-prepared TiO2 composites exhibited high specific surface area, light-scattering effect, and good crystallinity. The dye-sensitized solar cells (DSCs) using the TiO2 composites showed higher short-circuit photocurrent and overall conversion efficiency than the DSC from pure-anatase nanoparticles. The highest conversion efficiency was achieved from the DSC based on TiO2 nanocomposites with 24 wt% rutile nanorods, which was attributed to improved light harvesting caused by the enhancement of specific surface area and scattering effect from rutile nanorods.  相似文献   

11.
In this paper, a simple and efficient methodology for the low-temperature synthesis of phase-pure nanocrystalline rutile TiO2 with tuned morphology is reported. Control on morphology has been achieved by simple variation of the hydrothermal process, starting with titanium-tetrachloride without using mineralizers, additives or templating agents. The X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns showed no other phases of TiO2 establishing the formation of phase-pure rutile titania in the entire temperature range of synthesis (40-150 °C) and most noticeably even at a considerably low temperature (40 °C). Fourier transform infrared (FT-IR) spectra strongly indicated the presence of hydroxyl group or surface adsorbed water and the thermogravimetry and differential thermo-gravimetry (TG-DTG) showed no phase change up to 1000 °C. A combination of reaction parameters (temperature, time) with a thorough transmission electron microscopy (TEM) study demonstrated the formation of phase-pure rutile titania nanocrystals as nano-rods, bunched nano-spindles or spherical nanoparticles depending on the hydrothermal reaction conditions. The photocatalytic activity of the synthesized nanocrystals has been successfully evaluated on the photodegradation of methyl orange (MO), a well-known pollutant azo-dye, as a model reaction.  相似文献   

12.
Nitrogen ion-doped titania nanoparticles were obtained by the homogeneous precipitation in hexamethylenetetramine-titanium trichloride mixed solution followed by heat treatment in the solution at desired temperatures. After that the sample powders obtained were calcined in air at desired temperatures. Various phases of titania such as anatase, rutile and brookite were obtained depending on the reaction condition. Crystallite size, specific surface area and color also greatly changed as 5-50 nm, 20--200 m2·g-1 and light gray-yellow, respectively, depending on the solvent, pH, etc. The products after calcination around 400°C were yellow indicating doping with nitrogen ion. Photocatalytic activity for the oxidative decomposition of NO in air atmosphere was also evaluated by using a continuous flow system with 1 ppm NO gas, where the high pressure mercury arcs filtered using various filters were irradiated. All colored titania nanoparticles showed photocatalytic activity under visible light irradiation for the oxidative decomposition of nitrogen monoxide in air. Especially, the nanoparticles of anatase type nitrogen-doped titania obtained by the homogeneous precipitation using hexamethylenetetramine-methanol aqueous solution around 200°C showed excellent photocatalytic activity under visible light irradiation.  相似文献   

13.
A simple and mild synthetic route via a hydrothermal treatment of Mg2TiO4 has been developed to prepare brookite-type TiO2. The hydrothermal conversion of Mg2TiO4 to brookite proceeded in 1 M HCl solution even at 100 °C. The converted brookite grains were composed of the angular particles covered on the textured surface, leaving the original morphology of Mg2TiO4 grains. Compared with the commercially available TiO2 catalysts (rutile, anatase, and P25), the brookite obtained in this study showed a good photocatalytic activity toward the oxidation of benzyl alcohol to benzaldehyde under a simulated sunlight irradiation.  相似文献   

14.
Metastable TiO(2) polymorphs are more promising materials than rutile for specific applications such as photocatalysis or catalysis support. This was clearly demonstrated for the anatase phase but still under consideration for brookite, which is difficult to obtain as pure phase. Moreover, the surface doping of anatase with lanthanum ions is known to both increase the thermal stability of the metastable phase and improve its photocatalytic activity. In this study, TiO(2) nanoparticles of almost only the brookite structure were prepared by a simple sol-gel procedure in aqueous solution. The nanoparticles were then doped with lanthanum(III) ions. The thermal stability of the nanoparticles was analyzed by X-ray diffraction and kinetic models were successfully applied to quantify phases evolutions. The presence of surface-sorbed lanthanum(III) ions increased the phase stability of at least 200 °C and this temperature shift was attributed to the selective phase stabilization of metastable TiO(2) polymorphs. Moreover, the combination of the surface doping ions and the thermal treatment induces the vanishing of the secondary anatase phase, and the photocatalytic tests on the doped brookite nanoparticles demonstrated that the doping increased photocatalytic activity and that the extent depended on the duration of the sintering treatment.  相似文献   

15.
The objective of the present study was to develop a practical method to prepare a stable dispersion of TiO2 nanoparticles for biological studies. To address this matter a variety of different approaches for suspension of nanoparticles were conducted. TiO2 (rutile/anatase) dispersions were prepared in distilled water following by treated with different ultrasound energies and various dispersion stabilizers (1.0% carboxymethyl cellulose, 0.5% hydroxypropyl methyl cellulose K4M, 100% fetal bovine serum, and 2.5% bovine serum albumin). The average size of dispersed TiO2 (rutile/anatase) nanoparticles was measured by dynamic light scattering device. Agglomerate sizes of TiO2 in distilled water and 100% FBS were estimated using TEM analysis. Sedimentation rate of TiO2 (rutile/anatase) nanoparticles in dispersion was monitored by optical absorbance detection. In vitro cytotoxicity of various stabilizers in 16-HBE cells was measured using MTT assay. The optimized process for preparation of TiO2 (rutile/anatase) nanoparticles dispersion was first to vibrate the nanoparticles by vortex and disperse particles by ultrasonic vibration in distilled water, then to add dispersion stabilizers to the dispersion, and finally to sonicate the nanoparticles in dispersion. TiO2 (rutile/anatase) nanoparticles were disaggregated sufficiently with an ultrasound energy of 33 W for 10 min. The formation of TiO2 (rutile/anatase) agglomerates in distilled water was decreased obviously by addition of 1.0% CMC, 0.5% HPMC K4M, 100% FBS and 2.5% BSA. For the benefit of cell growth, FBS is the most suitable stabilizer for preparation of TiO2 (rutile/anatase) particle dispersions and subsequent investigation of the in vivo and in vitro behavior of TiO2 (rutile/anatase) nanoparticles. This method is practicable to prepare a stable dispersion of TiO2 (rutile/anatase) nanoparticles for at least 120 h.  相似文献   

16.
Titanium dioxide with different ratios of anatase to brookite has been prepared by a facile hydrothermal method in the presence of tartaric acid. The resulting samples were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectra, and Brunauer–Emmett–Teller analysis. The contents of anatase and brookite in the TiO2 particles have been successfully controlled by simply adjusting molar ratio of tartaric acid to Ti in reaction system. The degradation of Rhodamine B in aqueous solutions reveals that the catalyst containing 78.7?% anatase and 21.3?% brookite has the highest photocatalytic activity. A proposed mechanism is discussed to interpret the evolution of the phases based on the effect of different C4H6O6/Ti molar ratios.  相似文献   

17.
Ti O2 nanoparticles with a mixture of brookite and rutile phases were prepared from aqueous TiOCl2 solution at 80–150°C and pure rutile phase at 200°C. The volume fraction of brookite was gradually increased with increase of HCl concentration in the range of about 4.43 M to 6.28 M. The maximum volume fraction of brookite in the as-prepared TiO2 particles was obtained when oxidation of Ti4+ to TiO2 was completed but it was gradually decreased with increase of reaction time. The reaction time for complete oxidation of Ti4 + to TiO2 was about 15 h at 80°C, about 5 h at 100°C, about 2 h at 120°C, and about 1 h at 150°C, respectively, showing that the kinetics of oxidation is very dependent on the reaction temperature. Brookite phase was not transformed directly to rutile phase but to anatase phase by heat-treatment at about 750°C, which finally converted to rutile phase at 1100°C.  相似文献   

18.
《Materials Letters》2005,59(29-30):3820-3823
An oriented titania (brookite) film containing neither anatase nor rutile was synthesized by a new modified sol–gel method. The precursor was TiCl4 with cellulose and oxalic acid as complexing agent. The XRD results show oriented pure brookite titania thin film. The SEM micrograph shows square particles on the crack free continuous film. A diffusion of sodium from the substrate was detected by XPS. It was found that the nature of complexation, the concentration of the precursors, the polymer additive, solution media (low pH, solvent-EG) and the substrate were significant of the oriented brookite TiO2 films obtained.  相似文献   

19.
Titanium dioxide nanoparticles were prepared via a facile hydrothermal approach with titanium tetrabutoxide as a precursor under strongly acidic condition. The transmission electron microscopy results showed that novel flower-like, leaf-like, and rod-like TiO2 nanoscale materials could be easily obtained by tailoring the concentration of the precursor and the reaction temperature. And the analysis from X-ray diffraction revealed that all the as-prepared products under different experimental conditions possessed a mixed crystal phase of anatase and rutile. The reasons for the phase formation were discussed. Larger proportion of rutile phase should be ascribed to the strongly acidic conditions. The growth mechanisms of TiO2 nanostructures with various morphologies were also proposed.  相似文献   

20.
This work investigates the role of ionic strength during synthesis, reflux, and hydrothermal aging of sol-gel synthesized titanium dioxide. Research presented here uses X-ray diffraction data and Rietveld refinements to quantify anatase, brookite, and rutile phases as functions of synthetic and aging variables. In addition, the Scherrer equation is used to obtain average crystallite sizes for each phase quantified. Results presented in this work demonstrate that the most control over the sol-gel products can be obtained by modifying the pH during hydrolysis. In addition, while varying the ionic strength during reflux and hydrothermal aging can result in enhanced control over the crystalline phase and crystallite size, the most control can be achieved by varying the ionic strength during synthesis. Finally, sol-gel synthesis at low pH (−0.6) and high-chloride concentration (3 M NaCl) produced a heterogeneous sample composed of nanocrystalline anatase (3.8 nm) and rutile (2.9 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号