首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

2.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

3.
We have prepared polycrystalline single-phase ACo2+xRu4−xO11 (A = Sr, Ba; 0 ≤ x ≤ 0.5) using the ceramic method and we have studied their structure, electrical resistivity and Seebeck coefficient, in order to estimate their power factor (P.F.). These layered compounds show values of electrical resistivity of the order of 10−5 Ωm and their Seebeck coefficients are positive and range from 1 μV K−1 (T = 100 K) to 20 μV K−1 (T = 450 K). The maximum power factor at room temperature is displayed by BaCo2Ru4O11 (P.F.: 0.20 μW K−2 cm−1), value that is comparable to that shown by compounds such as SrRuO3 and Sr6Co5O15.  相似文献   

4.
A series of core-shell bifunctional magnetic-optical YVO4:Ln3+@Fe3O4 (Ln3+ = Eu3+ or Dy3+) nanocomposites have been successfully synthesized via two-step method. The nanocomposites have the advantage of high magnetic responsive and unique luminescence properties. The structure, luminescent and magnetic properties of the nanocomposites were investigated by XRD, TEM, PL and VSM. The maximum emission peaks of the nanocomposites are at 618 nm (doping Eu3+), 574 nm (doping Dy3+). The special saturation magnetization of the nanocomposites is 54 emu/g. The diameter of the nanocomposites is 400-900 nm.  相似文献   

5.
The influence of Zr substitution for Ti on the microwave dielectric properties and microstructures of the Mg(ZrxTi1−x)O3(MZxT) (0.01 ≤ x ≤ 0.3) ceramics was investigated. The quality factors of Mg(ZrxTi1−x)O3 ceramics with x = 0.01-0.05 were improved because the solid solution of a small amount of Zr4+ substitution in the B-site could increase density and grain size. An excess of Zr4+ resulted in the formation of a great deal of secondary phase that declined the microwave dielectric properties of MZxT ceramics. The temperature coefficient of resonant frequency (τf) of Mg(ZrxTi1−x)O3 ceramics slightly increased with increasing Zr content, and the variation in τf was attributed to the formation of secondary phases.  相似文献   

6.
Pseudo-1-3 magnetostrictive particulate composites consisting of light rare earth (Sm and Nd)-based magnetostrictive Sm1−xNdxFe1.55 particles with the Nd content x of 0-0.56 and randomly distributed sizes of 10-180 μm embedded and aligned in a passive epoxy matrix are fabricated using the particulate volume fraction of 0.5. The quasistatic magnetomechanical properties of the composites are investigated and the results are compared with their monolithic alloys for various x. The composites exhibit similar qualitative trends in properties with the alloys for all x. The Sm0.92Nd0.08Fe1.55 composite shows a large unsaturated magnetostriction λ of −530 ppm at 500 kA/m and a high piezomagnetic coefficient d33 of −2.0 nm/A at 100 kA/m as a result of the magnetocrystalline anisotropy compensation between Sm3+ and Nd3+ ions in the Sm0.92Nd0.08Fe1.55 alloy.  相似文献   

7.
This paper proposes La1−xKxFeO3 prepared by self-propagating high-temperature synthesis (SHS) as an alternative to platinum catalysts for promoting diesel soot combustion. The catalytic property of eleven products SHSed with different substitution ratios of potassium (x = 0-1) was experimentally evaluated using a thermobalance. In the mass loss curves of the product, T50 was defined as the temperature at which the weight of the reference soot decreases to half its initial weight. The BET specific surface area of SHSed La1−xKxFeO3 depended on x strongly. All the products showed good oxidation catalytic activity. Despite having the smallest surface area (0.11 m2/g) among the obtained products, La0.9K0.1FeO3 (x = 0.1) was found to be the best catalyst with the lowest T50 (442 °C). T50 of La1−xKxFeO3 decreased with increasing x for x > 0.2. The products with x = 0.6 and 0.8 were the second-best catalysts in terms of their T50. Moreover, average apparent activation energy of La0.9K0.1FeO3 (x = 0.1) calculated by Friedman method using TG was as much as 61 kJ/mol lower than that of Pt/Al2O3 catalyst. In conclusion, potassium-substituted SHSed La1−xKxFeO3 can be used as an alternative to Pt/Al2O3 for soot combustion.  相似文献   

8.
Bi2SexTe3−x crystals with various x values were grown by Bridgman method. The electrical conductivity, σ, was found to decrease with increasing Se content. The highest σ of 1.6 × 105 S m−1 at room temperature was reached at x = 0.12 with a growth rate of 0.8 mm h−1. The Seebeck coefficient, S, was less dependent on Se content, all with positive values showing p-type characteristics, and the highest S was measured to be 240 μV K−1 at x = 0.24. The lowest thermal conductivity, κ, was 0.7 W m−1 K−1 at x = 0.36. The electronic part of κ, κel, showed a decrease with increasing Se content, which implies that the hole concentration as the main carriers was reduced by the addition of Se. The highest dimensionless figure of merit, ZT, at room temperature was 1.2 at x = 0.36, which is attributed to the combination of a rather high electrical conductivity and Seebeck coefficient and low thermal conductivity.  相似文献   

9.
Dysprosium-activated Sr3RE2(BO3)4 (RE = Y, La, Gd) phosphors were synthesized by a high temperature solid-state reaction method. The phase uniformity of the phosphors was characterized by X-ray powder diffraction (XRD) and the luminescence characteristics were investigated. The excitation spectra at 575 nm emission show strong spectral bands in the region of 300-500 nm. The emission spectra of the phosphors with 365 nm excitation show three bands centered at 484 nm, 575 nm and 680 nm, which originate from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 of Dy3+, respectively. The effect of Dy3+ concentration on the emission intensity of the phosphors was investigated. The fluorescence decay curves for 4F9/2 → 6H13/2 excited at 365 nm and monitored at λem of 575 nm were measured. The decay times decreased slowly with increasing Dy3+ doping concentration due to a trap capturing to resonance fluorescence transfer of the activated ions and due to the exchange interactions between activated ion pairs. In order to determine the type of interaction between activated ions, the concentration dependence curves (lg(I/x) versus lg x) of Sr3RE2(BO3)4:Dy3+ (RE = Y, La, Gd) were plotted. The concentration quenching mechanism of the 4F9/2 → 6H13/2 (575 nm) transition of Dy3+ is the d-d interaction. All results indicate these phosphors are promising white-color luminescent materials.  相似文献   

10.
The microstructure and electrical properties of BaYxBi1−xO3 thick film negative temperature coefficient thermistors, fabricated by screen printing, were investigated. The sintered thick films were the single-phase solid solutions of the BaYxBi1−xO3 compounds with a monoclinic structure. The added Y2O3 led to a significant decrease in the grain size of the thermistors. The resistivity and coefficient of temperature sensitivity for the BaYxBi1−xO3 (0 ≤ x ≤ 0.15) thick film NTC thermistors decreased first with increasing x in the range of x < 0.04 and then increased with further increase in x.  相似文献   

11.
CuIn1−xAlxS2 thin films (x = 0, 0.09, 0.27, 0.46, 0.64, 0.82 and 1) with thicknesses of approximately 1 μm were formed by the sulfurization of DC sputtered Cu-In-Al precursors. All samples were sulfurized in a graphite container for 90 min at 650 °C in a 150 kPa Ar + S atmosphere. Final films were studied via X-ray diffraction (XRD), scanning electron microscopy (SEM) and micro-Raman spectroscopy. It was found that all samples were polycrystalline in nature and their lattice parameters varied slightly nonlinearly from {a = 5.49 Å, c = 11.02 Å} for CuInS2 to {a = 5.30 Å, c = 10.36 Å} for CuAlS2. No unwanted phases such as Cu2−xS or others were observed. Raman were recorded at a room temperature and the most intensive and dominant A1 phonon frequency varied nonlinearly from 294 cm−1 (CuInS2) to 314 cm−1 (CuAlS2).  相似文献   

12.
Density functional FP-LAPW + lo calculations have been performed to study the structural, electronic and magnetic properties of Mg1−xMnxTe for compositional parameter x = 0.25, 0.50, 0.75 and 1. Our calculations reveal the occurrence of ferromagnetism in these compounds in which the transition-metal atom is ordered in a periodical way thereby interacting directly with the host atoms. Results extracted from electronic band structure and density of states (DOS) of these alloys show the existence of direct energy band gap for both majority- and minority-spin cases, while the total energy calculations confirm the stability of ferromagnetic state as compared to anti-ferromagnetic state. The total magnetic moment for Mg1−xMnxTe for each composition is found to be approximately 5 μB, which indicates that the addition of Mn content does not affect the hole carrier concentration of the perfect MgTe compound. Moreover, the s-d exchange constant (N0α) and p-d exchange constant (N0β) are also calculated which are in accordance with a typical magneto-optical experiment. The estimated spin-exchange splitting energies originated by Mn 3d states energies, i.e. ΔX(s-d) and ΔX(p-d), show that the effective potential for minority-spin is more attractive than that of the majority-spin. Also, the p-d hybridization is found to cause the reduction of local magnetic moment of Mn and produce small local magnetic moments on the nonmagnetic Mg and Te sites.  相似文献   

13.
Preparation of the Ti3Si1−xAlxC2 solid solution with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS) using TiC-, SiC-, and Al4C3-containing powder compacts. Due to the variation of reaction exothermicity with sample stoichiometry, the combustion temperature and reaction front velocity decreased with increasing Al content of Ti3Si1−xAlxC2 for the TiC- and Al4C3-added samples, but increased for the samples with SiC. In contrast to the formation of Ti3(Si,Al)C2 as the dominant phase for the TiC- and SiC-added samples, TiC was identified as the major constituent in the final products of samples adopting Al4C3. In addition, the evolution of Ti3(Si,Al)C2 was improved by increasing the Al content of the TiC- and SiC-added powder compacts, but deteriorated considerably upon the increase of Al4C3 in the Al4C3-containing sample.  相似文献   

14.
A series of K doped Zn1−xMgxO thin films have been prepared by pulsed laser deposition (PLD). Hall-effect measurements indicate that the films exhibit stable p-type behavior with duration of at least six months. The band gap of the K doped Zn1−xMgxO films undergoes a blueshift due to the Mg incorporation. However, photoluminescence (PL) results reveal that the crystallinity decreased with the increasing of Mg content. The fabricated K doped p-type Zn0.95Mg0.05O thin film exhibits good electrical properties, with resistivity of 15.21 Ω cm and hole concentration of 5.54 × 1018 cm−3. Furthermore, a simple ZnO-based p-n heterojunction was prepared by deposition of a K-doped p-type Zn0.95Mg0.05O layer on Ga-doped n-type ZnO thin film with low resistivity. The p-n diode heterostructure exhibits typical rectification behavior of p-n junctions.  相似文献   

15.
We report the synthesis of LiNi0.85−xCo0.15MnxO2 positive electrode materials from Ni0.85−xCo0.15Mnx(OH)2 and Li2CO3. XRD and XPS are used to study the effect of Mn-doping on the microstructures and oxidation states of the LiNi0.85−xCo0.15MnxO2 materials. The analysis shows that Mn-doping promotes the formation of a single phase. With increasing substitution of Mn ions for Ni ions, the lattice parameter a decreases, while the lattice parameters c and c/a increase. XPS revealed that the oxidation states of Ni, Co and Mn in LiNi0.85−xCo0.15MnxO2 compounds (where x = 0.1, 0.2 and 0.4) were +2/+3, +3 and +4. The substitution of Mn ions for Ni ions induces a decrease in the average oxidation state of Ni. Because the substitution of Mn for Ni ions is complex, the extent of the changes between the lattice parameter and LM-O differ. The occupation of Ni in Li sites is affected by the ordering of Mn4+ with Ni2+ and Mn4+ with Li+.  相似文献   

16.
MgGdxFe2−xO4 (x = 0.0, 0.05, 0.1 and 0.15) ferrites, with improved dc resistivity, initial permeability, saturation magnetization, and extremely low relative loss factor, have been synthesized by solid state reaction technique. The microstructures, electric, dielectric and magnetic properties have been investigated by means of X-ray diffraction, Keithley 2611 system, impedance analyzer and VSM respectively. The addition of Gadolinium in Mg ferrite has been shown to play a crucial role in enhancing the electric, dielectric and magnetic properties. The dc resistivity is increased by two orders of magnitude as compared to Mg ferrite. Saturation magnetization has been increased by two times and remnant magnetization has been increased by more than three times due to the doping of Gd3+ ions in Mg ferrite. The relative loss factor was found to have very low values and is of the order of 10−4-10−5 in the frequency range 0.1-30 MHz. The variations of electric, dielectric and magnetic properties of the samples have been studied as a function of frequency and Gd3+ ions concentration measured at room temperature. High resistivity and improved magnetic properties can be correlated with better compositional stoichiometry and the replacement of Fe3+ ions by Gd3+ ions. The mechanisms responsible to these results have been discussed in this paper.  相似文献   

17.
The thermoelectric properties of Na0.8ZnxCo1−xO2/(ZnO)y (x ≤ 0.01, 0 ≤ y ≤ 0.14) have been systematically investigated. The results suggest that doping divalent Zn ions within solubility limit x* ∼ 0.01 leads to simultaneous reduction in resistivity and enhancement of thermopower. Analysis of the results show that the reduction of resistivity may be attributed to improved mobility of carriers, while the enhancement of thermopower may originate from the geometric relaxation of distorted CoO6 octahedra caused by partial Zn substitution, leading to a narrower band width in the strongly correlated environment, consequently resulting in a remarkable 20% improvement in power factor.  相似文献   

18.
The phase relation, microstructural, hysteresis, Curie temperature, and magnetocaloric effects of LaFe11.6Si1.4Bx (x = 0.1, 0.2, 0.3, 0.4, and 0.5) prepared by arc-melting and then annealed at 1373 K (1.5 h) + 1523 K (5 h) were investigated. It was found that the main phase is NaZn13-type phase, the impurity phases include α-Fe, Fe2B, and small amount of La5Si3. The boron atom can dissolve into the crystal lattice of LaFe11.6Si1.4Bx to form interstitial solid solution, but the content of solid solution is not up to x = 0.5. For LaFe11.6Si1.4Bx (x = 0.1, 0.3, and 0.5) compounds, the Curie temperature TC increases from 190.6 to 198.3 K with the increasing of B content from x = 0.1 to 0.5. The first order magnetic transition behavior becomes weaker and magnetic entropy change ΔSM (T, H) drops with the increasing of B content, respectively. However, ΔSM (T, H) still remains a large value, 11.18 J/kg K, when x reaches to 0.5 at 0-2 T. An attractive feature is that both thermal and magnetic hysteresis can be reduced remarkably by introducing B. The maximum magnetic hysteresis loss near TC drops from 22.52 to 4.95 J/kg when the content of B increases from x = 0.1 to 0.5.  相似文献   

19.
Substitutional compounds Cr1−xNixSb2 (0 ≤ x ≤ 0.1) were synthesized, and the effect of Ni substitution on transport and thermoelectric properties of Cr1−xNixSb2 were investigated at the temperatures from 7 to 310 K. The results indicated that the magnitudes of the resistivity and thermopower of Cr1−xNixSb2 decreased greatly with increasing Ni content at low temperatures, owing to an increase in electron concentration caused by Ni substitution for Cr. Experiments also showed that the low-temperature lattice thermal conductivity of Cr1−xNixSb2 decreased substantially with increasing Ni content due to an enhancement of phonon scattering by the increased number of Ni atoms. As a result, the figure of merit, ZT, of lightly doped Cr0.99Ni0.01Sb2 was improved at T > ∼230 K. Specifically, the ZT of Cr0.99Ni0.01Sb2 at 310 K was approximately ∼29% larger than that of CrSb2, indicating that thermoelectric properties of CrSb2 can be improved by an appropriate substitution of Ni for Cr.  相似文献   

20.
This investigation explores the electrical and magnetic properties of as-cast, -homogenized, and -deformed AlxCoCrFeNi (C-x, H-x, and D-x, respectively) alloys at various temperatures from 4.2 to 300 K. Experimental results reveal that carrier density of the alloys is of 1022-23 cm−3. H-x has a carrier mobility of 0.40-2.61 cm2 V−1 s−1. The residual electrical resistivity of the alloys varies from 100 to 220 μΩ cm. The temperature coefficient of resistivity (TCR) of H-2.00 is small (82.5 ppm/K). Therefore, defects in the lattice dominate electrical transportation. Some compositions exhibit Kondo-like behavior. At 300 K, H-0.50, H-1.25, and H-2.00 are ferromagnetic, while H-0.00, H-0.25, and H-0.75 are paramagnetic. Al and AlNi-rich phases reduce the ferromagnetism of single FCC and single BCC H-x, respectively. Spin glass behavior of some compositions is also observed. Alloys H-x are of the hole-like carrier type, and ferromagnetic H-x exhibits an anomalous Hall effect (AHE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号