首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhao W  Ali MM  Aguirre SD  Brook MA  Li Y 《Analytical chemistry》2008,80(22):8431-8437
The majority of bioassays utilize thermosensitive reagents (e.g., biomolecules) and laboratory conditions for analysis. The developing world, however, requires inexpensive, simple-to-perform tests that do not require refrigeration or access to highly trained technicians. To address this need, paper-based bioassays using gold nanoparticle (AuNP) colorimetric probes have been developed. In the two prototype DNase I and adenosine-sensing assays, blue (or black)-colored DNA-cross-linked AuNP aggregates were spotted on paper substrates. The addition of target DNase I (or adenosine) solution dissociated the gold aggregates into dispersed AuNPs, which generated an intense red color on paper within one minute. Both hydrophobic and (poly(vinyl alcohol)-coated) hydrophilic paper substrates were suitable for this biosensing platform; by contrast, uncoated hydrophilic paper caused "bleeding" and premature cessation of the assay due to surface drying. The assays are surprisingly thermally stable. During preparation, AuNP aggregate-coated papers can be dried at elevated temperatures (e.g., 90 degrees C) without significant loss of biosensing performance, which suggests the paper substrate protects AuNP aggregate probes from external nonspecific stimuli (e.g., heat). Moreover, the dried AuNP aggregate-coated papers can be stored for at least several weeks without loss of the biosensing function. The combination of paper substrates and AuNP colorimetric probes makes the final products inexpensive, low-volume, portable, disposable, and easy-to-use. We believe this simple, practical bioassay platform will be of interest for use in areas such as disease diagnostics, pathogen detection, and quality monitoring of food and water.  相似文献   

2.
Gao J  Liu D  Wang Z 《Analytical chemistry》2008,80(22):8822-8827
In order to develop a novel high-throughput tool for monitoring carbohydrate-protein interactions, we prepared carbohydrate or glycoprotein microarrays by immobilizing amino modified carbohydrates on aldehyde-derivatized glass slides or glycoprotein on epoxide-derivatized glass slides and carried out lectin binding experiments by using these microarrays, respectively. The interaction events are marked by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The attachment of the gold nanoparticles is achieved by standard avidin-biotin chemistry. The detection principle is resonance light scattering (RLS). The well-defined recognition systems, namely, three monosaccharides (Man-alpha, Glc-beta and Gal-beta) or three glycoproteins (Asf, RNase A and RNase B) with two lectins (ConA and RCA120), were chosen here to establish the RLS assay, respectively. Highly selective recognition of carbohydrate-protein down to 25.6 pg/mL for RCA120 in solution and 8 microM for Gal-beta and 32 ng/mL for Asf on the microarray spots is demonstrated.  相似文献   

3.
Radioactive iodine-labeled, cyclic RGD-PEGylated gold nanoparticle (AuNP) probes are designed and synthesized for targeting cancer cells and imaging tumor sites. These iodine-125-labeled cRGD-PEG-AuNP probes are stable in various conditions including a range of pHs and high salt and temperature conditions. These probes can target selectively and be taken up by tumor cells via integrin αvβ3-receptor-mediated endocytosis with no cytotoxicity. The probes show a significant increase in the avidity of αvβ3 integrin compared to the corresponding free cRGD peptides. In-vivo SPECT/CT imaging results show that the iodine-125-labeled cRGD-PEG-AuNP probes can target the tumor site as soon as 10 min after injection, and also that cyclic RGD peptides are needed for efficient and long-term in-vivo monitoring. The results suggest that the probes circulate through the whole body, including renal filtration, and are excretable. These promising results show that radioactive-iodine-labeled gold nanoprobes have potential for highly specific and sensitive tumor imaging or for use as angiogenesis-targeted SPECT/CT imaging probes.  相似文献   

4.
Wang Z  Lee J  Cossins AR  Brust M 《Analytical chemistry》2005,77(17):5770-5774
We report a microarray format for the detection of proteins and protein functionality (kinase activity) based on marking either specific antibody-protein binding or peptide phosphorylation events by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The attachment of the gold nanoparticles is achieved by standard avidin-biotin chemistry. The detection principle is resonance light scattering. Highly selective recognition of standard proteins (proteins A and G) down to 1 pg/mL for proteins in solution and 10 fg for proteins on the microarray spots is demonstrated. Enzyme activity of the kinase (PKA) is detected with high specificity down to a limit of 1 fg for an established peptide substrate (kemptide) on the microarray spots. Kinase inhibition by the inhibitor (H89) is shown, demonstrating the potential for high-throughput screening for inhibitors.  相似文献   

5.
Gao J  Liu D  Wang Z 《Analytical chemistry》2010,82(22):9240-9247
To develop a novel high-throughput tool for monitoring specific affinity of microbes with lectins, a kind of lectin microarray has been fabricated by immobilizing lectins on epoxide-derivatized glass slides and used to capture microbes. The capturing events are marked by attachment of lectin-conjugated gold nanoparticles followed by silver deposition to enhance the resonance light scattering (RLS) of the particles. The interactions of 16 lectins with four bacteria and one fungus were profiled by this approach. We demonstrated that the gold-nanoparticle-labeled array was suitable for identifying the binding affinity of lectin with bacterium, as well as determining the bacterium with high sensitivity. More importantly, we found that the growth of microbial strains in different culture media resulted in significant changes in their binding affinities with lectins, which might be important to the pathogenesis of the organisms.  相似文献   

6.
Modified kaolinite clay with 25% (w/w) aluminium sulphate and unmodified kaolin were investigated as adsorbents to remove Pb(II) from aqueous solution. The results show that amount of Pb(II) adsorbed onto modified kaolin (20 mg/g) was more than 4.5-fold than that adsorbed onto unmodified kaolin (4.2 mg/g) under the optimized condition. In addition, the linear Langmuir and Freundlich models were used to describe equilibrium isotherm. It is observed that the data from both adsorbents fitted well to the Langmuir isotherm. The kinetic adsorption of modified and unmodified kaolinite clay fitted well to the pseudo-second-order model. Furthermore, both modified and unmodified kaolinite clay were characterized by X-ray diffraction, Fourier transform infrared (FT-IR) and scanning electron microscope (SEM). Finally, both modified and unmodified kaolinite clay were used to remove metal ions from real wastewater, and results show that higher amount of Pb(II) (the concentration reduced from 178 to 27.5 mg/L) and other metal ions were removed by modified kaolinite clay compared with using unmodified adsorbent (the concentration reduced from 178 to 168 mg/L).  相似文献   

7.
Piezoresistive microcantilever-based sensors maybe used in a variety of sensing applications, including chemical sensing and biological sensing. In these applications, a sensing material is functionalized so as to undergo a volumetric or dimensional change upon analyte exposure. A piezoresistive microcantilever in contact with, or embedded within, the sensing material records the dimensional change as a simple resistance change in the cantilever as it is strained by the volumetric shift in the sensing layer. Here, we describe the detection of single-strand DNA by utilizing a sensing layer material consisting of thiolated single-strand DNA attached to a gold film substrate. A piezoresistive microcantilever in direct contact with this layer in solution immediately responds to the presence of the complimentary (25 base) single strand.  相似文献   

8.
Xu S  Liu Y  Wang T  Li J 《Analytical chemistry》2010,82(22):9566-9572
A novel electrogenerated chemiluminescence (ECL) biosensor using gold nanoparticles as signal transduction probes was described for the detection of kinase activity. The gold nanoparticles were specifically conjugated to the thiophosphate group after the phosphorylation process in the presence of adenosine 59-[c-thio] triphosphate (ATP-s) cosubstrate. Due to its good conductivity, large surface area, and excellent electroactivity to luminol oxidization, the gold nanoparticles extremely amplified the ECL signal of luminol, offering a highly sensitive ECL biosensor for kinase activity detection. Protein kinase A (PKA), an important enzyme in regulation of glycogen, sugar, and lipid metabolism in the human body, was used as a model to confirm the proof-of-concept strategy. The as-proposed biosensor presented high sensitivity, low detection limit of 0.07 U mL(-1), wide linear range (from 0.07 to 32 U mL(-1)), and excellent stability. Moreover, this biosensor can also be used for quantitative analysis of kinase inhibition. On the basis of the inhibitor concentration dependent ECL signal, the half-maximal inhibition value IC(50) of ellagic acid, a PKA inhibitor, was estimated, which was in agreement with those characterized with the conventional kinase assay. While nearly no ECL signal change can be observed in the presence of Tyrphostin AG1478, a tyrosine kinase inhibitor, but not PKA inhibitor, shows its excellent performance in kinase inhibitor screening. The simple and sensitive biosensor is promising in developing a high-through assay of in vitro kinase activity and inhibitor screening for clinic diagnostic and drug development.  相似文献   

9.
Monolayer-protected gold nanoparticle materials were synthesized and characterized for use as sorptive layers on chemical sensors. Thiols investigated as monolayer-forming molecules included dodecanethiol, benzenethiol, 4-chlorobenzenethiol, 4-bromobenzenethiol, 4-(trifluoromethyl)benzenethiol, 4-hydroxybenzenethiol, and 4-aminobenzenethiol. Films of selected monolayer-protected nanoparticle (MPN) materials were deposited on thickness shear mode devices and vapor uptake properties were measured at 298 K. Many, but not all, MPN-based sensing layers demonstrated rapid and reversible uptake of vapors, and sorptive selectivity varies with the monolayer structure. The mass of vapor sorbed per mass of sorptive material was determined and compared with poly(isobutylene) and poly(epichlorohydrin) as examples of simple sorptive polymers that have been used on vapor sensors. The nanoparticle-based films considered here were less sorptive than the selected polymers on a per-mass basis. Partition coefficients, which measure the mass of vapor sorbed per volume of the sorptive phase, were estimated for these MPN materials and found to be comparable to or less than those of the polymer layers. Implications for the roles of sorption and transduction in determining the performance of chemical sensors coated with nanoparticle-based films are discussed.  相似文献   

10.
Calixarenes are a group of materials that are widely used for gas sensing studies because of their simple synthesis, conformational flexibility, binding group tunability, variability in their cavity sizes and improved selectivity to different gas molecules. In recent years it has been shown that incorporation of gold nanoparticles (AuNPs) into organic layers further enhances their gas sensing performance. The present study reports on the fabrication of thin films of calixarene and AuNPs using Langmuir–Schaefer (LS) methods. The gas sensing properties of the produced films are investigated on exposure to saturated vapours of volatile organic compounds (VOCs) using surface plasmon resonance as an optical detection technique. Multilayers comprising films of AuNPs and calixarene have been investigated to evaluate the effect of AuNPs on the films sensing performances. It has been demonstrated that the hybrid layers exhibited improved sensing performance in terms of the degree of their response.  相似文献   

11.
Colorimetric detection of analytes using gold nanoparticles along with surface-enhanced Raman spectroscopy (SERS) are areas of intense research activity since they both offer sensing of very low concentrations of target species. Multimodal detection promotes the simultaneous detection of a sample by a combination of different techniques; consequently, surface chemistry design in the development of multimodal nanosensors is important for rapid and sensitive evaluation of the analytes by diverse analytical methods. Herein it is shown that nanoparticle size plays an important role in the design of functional nanoparticles for colorimetric and SERS-based sensing applications, allowing controlled nanoparticle assembly and tunable sensor response. The design and preparation of robust nanoparticle systems and their assembly is reported for trace detection of Ni(II) ions as a model system in an aqueous solution. The combination of covalently attached nitrilotriacetic acid moieties along with the L-carnosine dipeptide on the nanoparticle surface represents a highly sensitive platform for rapid and selective detection of Ni(II) ions. This systematic study demonstrates that significantly lower detection limits can be achieved by finely tuning the assembly of gold nanoparticles of different core sizes. The results clearly demonstrate the feasibility and usefulness of a multimodal approach.  相似文献   

12.
This communication reports an efficient visual detection method of Cu2+ by L-cysteine functionalized gold nanoparticles in aqueous solution. Upon exposure to Cu2+, the gold nanoparticle solution changed from red to blue, in response to surface plasmon absorption of dispersed and aggregated nanoparticles. This colorimetric sensor allows a rapid quantitative assay of Cu2+ down to the concentration range of 10(-5) M. Recognition of Cu2+ and formation of the aggregates are proposed to occur via a 2 : 1 sandwich complex between L-cysteine and Cu2+.  相似文献   

13.
Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2?nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2?×?10(5)) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface.  相似文献   

14.
15.
Biosynthesis of gold nanoparticles (AuNPs) was obtained by a simple chemical reduction method using a plant-derived aglycone flavonoid, quercetin, as a reducing agent. The aqueous chloroauric acid when exposed to quercetin was reduced and converted to AuNPs in the size range from 20 to 45?nm. AuNPs were characterised by UV–visual spectroscopy, transmission electron microscopy, atomic force microscopy and dynamic light scattering method. These quercetin-mediated AuNPs have shown excellent stability for more than 30 days at 2–8°C. These quercetin-stabilised AuNPs will have an enormous potential for further conjugation studies since no other external stabilising agent is used.  相似文献   

16.
Magnesium-ion-mediated RNA-RNA loop-receptor interactions, in conjunction with gold nanoparticles derivatized with DNA, have been used to make self-assembled nanowires. A wire located between lithographically fabricated nanoelectrodes is demonstrated that exhibits activated conduction by electron hopping at temperatures in the 150-300 K range. These techniques have the ability to link particles between devices and in the future may be used to assemble practical circuits.  相似文献   

17.
Interfacial interactions between immobilized DNA probes and DNA-specific sequence binding drugs were investigated using impedance spectroscopy toward the development of a novel biosensing scheme. The impedance measurements are based on the charge-transfer kinetics of the [Fe(CN)6]3-/4- redox couple. Compared to bare gold surfaces, the immobilization of DNA and then the DNA-drug interaction on electrode surfaces altered the capacitance and the interfacial electron resistance and thus diminished the charge-transfer kinetics by reducing the active area of the electrode or by preventing the redox species from approaching the electrode. Electrochemical deposition of gold nanoparticles on a gold electrode surface showed significant improvement in sensitivity. DNA-capped gold nanoparticles on electrodes act as selective sensing interfaces with tunable sensitivity due to higher amounts of DNA probes and the concentric orientation of the DNA self-assembled monolayer. The specificity of the interactions of two classical minor groove binders, mythramycin, a G-C specific-DNA binding anticancer drug, netropsin, an A-T specific-DNA binding drug and an intercalator, nogalamycin on AT-rich DNA-modified substrate and GC-rich DNA-modified substrate are compared. Using gold nanoparticle-deposited substrates, impedance spectroscopy resulted in a 20-40-fold increase in the detection limit. Arrays of deposited gold nanoparticles on gold electrodes offered a convenient tool to subtly control probe immobilization to ensure suitably adsorbed DNA orientation and accessibility of other binding molecules.  相似文献   

18.
Yao Y  Sun Z  Zou Z  Li H 《Nanotechnology》2011,22(43):435502
Quinoline derivatives were brought into the surface of gold nanoparticles (Au NPs) through click chemistry. The fluorescence was quenched by Au NPs because of electron transfer between Au NPs and quinoline. However, upon addition of Cd(2+) to the quinoline-triazole Au NP solution, it exhibited an effective switch-on fluorescence response, owing to the coordination between quinoline and Cd(2+) which can efficiently block the electron transfer. What's more, the fluorescent sensor can effectively detect Cd(2+) in aqueous solution with a detection limit of 1.0 × 10(-5) M.  相似文献   

19.
Divalent DNA-AuNP (gold nanoparticle) conjugates comprising two DNA strands at diametrically opposed positions are prepared. Highly linear 1D and tetragonal lattice-like 2D AuNP arrays are constructed using the conjugates and DNA assemblies based on T- and double-crossover motifs and the Holliday junction.  相似文献   

20.
Zu Y  Ting AL  Yi G  Gao Z 《Analytical chemistry》2011,83(11):4090-4094
Extensive secondary structures in nucleic acid targets seriously impede the binding of complementary oligonucleotide probes. We report here a method to conduct the detection under extremely low salt conditions where the secondary structures are less stable and more accessible. A new type of nanoparticle probes prepared by functionalizing gold nanoparticles with nonionic morpholino oligos is employed. Because of the salt-independent hybridization of the probes with nucleic acid targets, nanoparticle assemblies can be formed in 2 mM Tris buffer solutions containing 0-5 mM NaCl, leading to the colorimetric target recognition. The sharp melting transitions of the target-probe hybrids allow discrimination of single-base imperfection, including substitution, deletion, and insertion. The method works effectively in detecting sequences that are likely to form secondary structure. In addition, the study provides direct evidence of the relationship between the aggregate structure and the melting behavior of the DNA-linked nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号