首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了满足新能源储能及电动汽车对锂离子电池持续快速充电、慢速放电性能的要求,以正硅酸乙酯为二氧化硅前驱体,在两亲性炭材料(ACM)与聚乙二醇400(PEG400)形成的氢键限域体系中制备了大倍率二氧化硅/碳复合锂电负极材料(SiO_2-130/C)。材料表征结果表明,二氧化硅的粒径由500nm(未限域)降低到130nm(限域),同时,富碳的ACM在二氧化硅纳米颗粒表面构建了导电性良好的碳框架。在0.1A·g~(-1)和1A·g~(-1)的电流密度下,SiO_2-130/C的可逆比容量分别为527mAh·g~(-1)和347mAh·g~(-1),且在1A·g~(-1)的电流密度下连续400个充放电循环后,仍具有483 mAh·g~(-1)的可逆比容量,表现出优异的倍率性能及稳定的电化学性能。  相似文献   

2.
Silicon (Si) quantum dot (QD) materials have been proposed for 'all-silicon' tandem solar cells. In this study, solar cells consisting of phosphorus-doped Si QDs in a SiO(2) matrix deposited on p-type crystalline Si substrates (c-Si) were fabricated. The Si QDs were formed by alternate deposition of SiO(2) and silicon-rich SiO(x) with magnetron co-sputtering, followed by high-temperature annealing. Current tunnelling through the QD layer was observed from the solar cells with a dot spacing of 2?nm or less. To get the required current densities through the devices, the dot spacing in the SiO(2) matrix had to be 2?nm or less. The open-circuit voltage was found to increase proportionally with reductions in QD size, which may relate to a bandgap widening effect in Si QDs or an improved heterojunction field allowing a greater split of the Fermi levels in the Si substrate. Successful fabrication of (n-type) Si QD/(p-type) c-Si photovoltaic devices is an encouraging step towards the realization of all-silicon tandem solar cells based on Si QD materials.  相似文献   

3.
In the present work, mercaptopropionic acid (MPA) capped CdTe and CdHgTe quantum dots (QDs) are synthesized using a method based on the bottom up approach in aqueous medium. The CdTe QDs were prepared with a two different ratios of Cd:Te (3:1 and 4:1). It was noticed that there was a minimum concentration of MPA for each Cd:Te ratio. The resulting QDs were characterized using optical absorption spectroscopy, energy dispersion X-ray (EDX) and high resolution transmission electron microscopy (HRTEM). It was found that the EDXs of CdTe and CdHgTe QDs showed that the stiochiometric ratios of CdTe obtained with Cd:Te ratio of 3:1 is 50:50 and for CdHgTe is 40:26:34 for 100?% of Hg. The band gap of CdHgTe QDs varies slightly with composition from 2.21?eV for a pure CdTe to 1.4?eV for a CdHgTe with 100?% of Hg. The HRTEM image showed a good dispersed nano-crystalline structure for the CdTe QDs with average size of 3–4?nm. The existence of the lattice planes on the HRTEM images of the QD indicated that the CdTe QDs are highly crystalline. In addition, the CdHgTe QDs size is 12?nm for 100?% of Hg.  相似文献   

4.
Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.  相似文献   

5.
Luminescent ZnO nanocrystals were synthesized by basic hydrolysis of Zn(OAc)(2) in the presence of oleic acid and then functionalized with (poly)aminotrimethoxysilanes in the presence of tetramethylammonium hydroxide to render the QDs water-dispersible. The highest photoluminescence quantum yield (17%) was achieved using N(1)-(2-aminoethyl)-N(2)-[3-(trimethoxysilyl)propyl]-1,2-ethanediamine as surface ligand. Transmission electron microscopy and powder x-ray diffraction showed highly crystalline materials with a ZnO nanoparticle diameter of about 4?nm. The cytotoxicity of the different siloxane-capped ZnO QDs towards growing Escherichia coli bacterial cells was evaluated in MOPS-minimal medium. Although concentrations of 5?mM in QDs caused a complete growth arrest in E.?coli, siloxane-capped ZnO QDs appeared weakly toxic at lower doses (0.5 or 1?mM). The concentration of bioavailable Zn (2+) ions leaked from ZnO QDs was evaluated using the biosensor bacteria Cupriavidus metallidurans AE1433. The results obtained clearly demonstrate that concentrations of bioavailable Zn(2+) are too low to explain the inhibitory effects of the ZnO QDs against bacteria cells at 1?mM and that the siloxane shell prevents ZnO QDs from dissolution contrary to uncapped ZnO nanoparticles. Because of their low cytotoxicity, good biocompatibility, low cost and large number of functional amine end groups, which makes them easy to tailor for end-user purposes, siloxane-capped ZnO QDs offer a high potential as fluorescent probes and as biosensors.  相似文献   

6.
Metallic zinc nanoparticles (NPs) of 5-15?nm in diameter, formed in silica glass (SiO(2)) by Zn ion implantation of 60?keV, showed a strong ultraviolet absorption peak at around 4.8?eV, which has been assigned as the surface plasmon resonance (SPR) of Zn NPs, and another small peak at 1.2?eV, which has never been reported before. To identify the origin of the 1.2?eV peak, the correlations of thermal stability between the two peaks and Zn NPs were evaluated under annealing both in a vacuum (pure thermal stability) and in oxygen gas (thermal oxidation stability). The well-correlated stability between the 1.2?eV peak, the 4.8?eV peak and Zn NPs indicates that the 1.2?eV peak is not ascribed to radiation-induced defects but to the Zn NPs. The 1.2?eV peak can be ascribed to an SPR of Zn NPs in SiO(2), because the peak satisfies the criterion of the SPR of metallic NPs. Since the 4.8?eV peak is also expected to satisfy the criterion, Zn NPs in SiO(2) have two SPRs at 1.2 and 4.8?eV.  相似文献   

7.
Bidirectional Reflectance Distribution Function of Rough Silicon Wafers   总被引:4,自引:0,他引:4  
The trend towards miniaturization of patterning features in integrated circuits (IC) has made traditional batch furnaces inadequate for many processes. Rapid thermal processing (RTP) of silicon wafers has become more popular in recent years for IC manufacturing. Light-pipe radiation thermometry is the method of choice for real-time temperature monitoring in RTP. However, the radiation environment can greatly affect the signal reaching the radiometer. The bidirectional reflectance distribution function (BRDF) of rough silicon wafers is needed for the prediction of the reflected radiation that reaches the radiometer and for reflective RTP furnace design. This paper presents the BRDF measurement results for several processing wafers in the wavelength range from 400 to 1100 nm with the spectral tri-function automated reference reflectometer (STARR) at the National Institute of Standards and Technology (NIST). The rms roughness of these samples ranges from 1 nm to 1 m, as measured with an optical interferometric microscope. Correlations between the BRDF and surface parameters are obtained using different models by comparing theoretical predictions with experiments.  相似文献   

8.
运用俄歇电子能谱深度剖析和线形分析研究了PZT/Si界面氧化反应的机理和动力学过程。研究结果表明,在PZT/Si样品的热处理过程中,环境气氛中的氧可以透过PZT薄膜层扩散到PZT/Si界面,并与硅基底反应形成SiO2界面层。界面氧化反应由氧在PZT层和SiO2层中的扩散过程所控制。  相似文献   

9.
Yin Z  Tang X  Zhang J  Deny S  Teng J  Du A  Chin MK 《Nanotechnology》2008,19(8):085603
First-step nucleation growth has an important impact on the two-step growth of high-quality mid-infrared emissive InAs/InGaAs/InP quantum dots (QDs). It has been found that an optimized growth rate for first-step nucleation is critical for forming QDs with narrow size distribution, high dot density and high crystal quality. High growth temperature has an advantage in removing defects in the QDs formed, but the dot density will be reduced. Contrasting behavior in forming InAs QDs using metal-organic vapor phase epitaxy (MOVPE) by varying the input flux ratio of group-V versus group-III source (V/III ratio) in the first-step nucleation growth has been observed and investigated. High-density, 2.5 × 10(10)?cm(-2), InAs QDs emitting at>2.15?μm have been formed with narrow size distribution, ~1?nm standard deviation, by reducing the V/III ratio to zero in first-step nucleation growth.  相似文献   

10.
Kim K  Jeong S  Woo JY  Han CS 《Nanotechnology》2012,23(6):065602
We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.  相似文献   

11.
Intense excimer laser pulses, flash lamp annealing and rapid thermal annealing were used to form Si nanocrystals in thin SiO(2) layers implanted with high doses of Si ions. The pulse durations were 20?ns, 20?ms and 1?s, respectively. Laser annealing produced light sources luminescing in the wavelength range of 400-600?nm. They were attributed to the Si clusters formed as a result of the fast segregation of Si atoms from the SiO(2) network. There were no indications of nanocrystal formation in the as-implanted layers after 20?ns laser pulses; however, nanocrystals formed when, before the laser annealing, the amorphous Si nanoprecipitates were prepared in the oxide layers. Evaluations show that the crystallization may proceed via melting. A photoluminescence band near 800?nm, typical of Si nanocrystals, was found after 20?ms and 1?s anneals. Calculations revealed that the annealing times in both cases were too short to provide the diffusion-limited crystal growth if one uses the values of stationary Si diffusivity in SiO(2). This points toward the existence of a transient rapid growth process at the very beginning of the anneals.  相似文献   

12.
Tzeng SS  Li PW 《Nanotechnology》2008,19(23):235203
Metal-oxide-semiconductor (MOS) diodes with zero-, one-?or three-layer Ge quantum dots (QDs) embedded in the gate oxide are fabricated for visible to near-ultraviolet photodetection. Ge dots are formed by thermally oxidizing one or three stacks of amorphous Si (a-Si)/polycrystalline-Si(0.87)Ge(0.13)/a-Si multi-layers that are sandwiched by SiO(2) barriers. The current-voltage characteristics of Ge QD MOS diodes exhibit strong rectification in darkness and feature significant current enhancement in the inversion mode when illuminated. Increasing the number of Ge QD layers from zero through one to three in the gate oxide improves the responsivity from 4.64 through 482 to 812?mA?W(-1) and enhances the corresponding quantum efficiency from 1.42 through 148 to 245%, respectively. The spectral response reveals a considerable blueshift in peak energies as the Ge dot size decreases from 9.1 to 5.1?nm, suggesting that the light absorption originates from the quantum confinement effect of Ge QDs. The temperature and bias dependences of the dark current indicate that the carrier transport mechanism involves percolation hopping.  相似文献   

13.
In recent years, silicon nanostructures have been investigated extensively for their potential use in photonic and photovoltaic applications. So far, for silicon quantum dots embedded in SiO(2), control over inter-dot distance and size has only been observed in multiple bilayer stacks of silicon-rich oxides and silicon dioxide. In this work, for the first time the fabrication of spatially well-ordered Si quantum dots (QDs) in SiO(2) is demonstrated, without using the multilayer approach. This ordered formation, confirmed with TEM micrographs, depends on the thickness of the initially deposited sub-stoichiometric silicon oxide film. Grazing incidence x-ray diffraction confirms the crystallinity of the 5?nm QDs while photoluminescence shows augmented bandgap values. Low-temperature current-voltage measurements demonstrate film thickness and order-dependent conduction mechanisms, showing the transition from temperature-dependent conduction in randomly placed dots to temperature-independent tunnelling for geometrically ordered nanocrystals. Contrary to expectations from dielectric materials, significant conduction and photocarrier generation have been observed in our Si QDs embedded in SiO(2) demonstrating the possibility of forming initial film-thickness-controlled conductive films. This conduction via the silicon quantum dots in thick single layers is a promising result for integration into photovoltaic devices.  相似文献   

14.
Wang J  Han H  Jiang X  Huang L  Chen L  Li N 《Analytical chemistry》2012,84(11):4893-4899
Near-infrared electrochemiluminescence (NIR ECL) from quantum dots (QDs) has aroused particular attention. However, whether it is possible to achieve NIR ECL sensing has remained an open question. In this article, we reported a NIR ECL immunosensor with amplification techniques for ultrasensitive and selective determination of biomarker. In this sensing platform, NIR-emitting CdTe/CdS core(small)/shell(thick) QDs were first selected as NIR ECL emitters. The NIR ECL nanoprobe (SiO(2)-QD-Ab2) was designed by covalent assembly of goat antihuman IgG antibody (Ab2) on CdTe/CdS QDs tagged silica nanospheres. Gold nanoparticle-graphene nanosheet (Au-GN) hybrids were prepared by a sonication-induced self-assembly and served as an effective matrix for initial antibodies (Ab1) attachment. After a sandwich immunoreaction, the functionalized silica nanosphere labels were captured onto the glass carbon electrode surface. Integrating the dual amplification from the promoting electron transfer rate of Au-GN hybrids and the increasing QD loading of SiO(2)-QD-Ab2 labels, the NIR ECL response from CdTe/CdS QDs enhanced 16.8-fold compared to the unamplified protocol and successfully fulfilled the ultrasensitive detection of human IgG (HIgG) with a detection limit of 87 fg mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor HIgG level in human serum with satisfactory results obtained.  相似文献   

15.
A combined hot-injection and heat-up method was developed to synthesize monodisperse and uniform CoMn2O4 quantum dots (CMO QDs).CMO QDs with average size of 2.0,3.9,and 5.4 nm were selectively obtained at 80,90,and 105 ℃,respectively.The CMO QDs supported on carbon nanotubes (CNTs) were employed as catalysts for the oxygen reduction/evolution reaction (ORR/OER) in alkaline solution to investigate their size-performance relationship.The results revealed that the amount of surface-adsorbed oxygen and the band gap energy,which affect the charge transfer in the oxygen electrocatalysis processes,strongly depend on the size of the CMO QDs.The CMO-3.9/CNT hybrid,consisting of CNT-supported CMO QDs of 3.9 nm size,possesses a moderate amount of surfaceadsorbed oxygen,a lower band gap energy,and a larger charge carrier concentration,and exhibits the highest electrocatalytic activity among the hybrid materials investigated.Moreover,the CMO-3.9/CNT hybrid displays ORR and OER performances similar to those of the benchmark Pt/C and RuO2 catalysts,respectively,due to the strong carbon-oxide interactions and the high dispersion of CoMn2O4 QDs on the carbon substrate;this reveals the huge potential of the CMO-3.9/CNT hybrid as a bifunctional OER/ORR electrocatalyst.The present results highlight the importance of controlling the size of metal oxide nanodots in the design of active oxygen electrocatalysts based on spinel-type,nonprecious metal oxides.  相似文献   

16.
The influence of thioalkyl acid ligand was evaluated during aqueous synthesis at 100?°C and under hydrothermal conditions (150?°C) of CdTe and CdSe quantum dots (QDs). Experiments performed with 3-mercaptopropionic acid (MPA), 6-mercaptohexanoic acid (MHA) and 11-mercaptoundecanoic acid (MUA) demonstrated that the use of MHA and MUA allowed for the preparation of very small nanoparticles (0.6-2.5?nm) in carrying out the reaction under atmospheric pressure or in an autoclave and that the photophysical properties of QDs were dependent on the ligand and on the synthesis conditions. The influence of various experimental conditions, including the Te-to-Cd ratio, temperature, and precursor concentration, on the growth rate of CdTe or CdSe QDs has been systematically investigated. The fluorescence intensities of CdTe QDs capped with MPA, MHA, or MUA versus pH were also found to be related to the surface coverage of the nanoparticles.  相似文献   

17.
Ryu Y  Tak Y  Yong K 《Nanotechnology》2005,16(7):S370-S374
A simple, direct synthesis method was used to grow core-shell SiC-SiO(2) nanowires by heating NiO-catalysed silicon substrates. A carbothermal reduction of WO(3) provided a reductive environment and carbon source to synthesize crystalline SiC nanowires covered with SiO(2) sheaths at the growth temperature of 1000-1100?°C. Transmission electron microscopy showed that the SiC core was 15-25?nm in diameter and the SiO(2) shell layer was an average of 20?nm in thickness. The thickness of the SiO(2) shell layer could be controlled using hydrofluoric acid (HF) etching. Field emission results of core-shell SiC-SiO(2) and bare SiC nanowires showed that the SiC nanowires coated with an optimum SiO(2) thickness (10?nm) have a higher field emission current than the bare SiC nanowires.  相似文献   

18.
Rapid atomic layer deposition (RALD) of SiO? thin films was achieved using trimethyl-aluminum and tris(tert-pentoxy)silanol (TPS) as the catalyst and Si precursor, respectively. A maximum growth rate as high as ~28 nm/cycle was obtained by optimizing the catalyst layer density, whereas the previous reports showed lower values of 12 to 17 nm/cycle [Hausmann et al. Science2002, 298, 402-406; Burton et al. Chem. Mater. 2008, 20, 7031-7043]. When the growth temperature was increased from 140 to 230 °C, the growth rate was not much reduced and the TPS pulse time showing a saturated growth rate became rather longer. Si-CH?, Si-OH, and Si-H bonds were not detected in infrared spectra from the RALD SiO? film grown at 230 °C. The film quality could be enhanced substantially by applying a higher growth temperature and an in situ post plasma treatment process.  相似文献   

19.
Yu H  Zhang R  Li B 《Nanotechnology》2011,22(33):335202
We report a one-step process for decorating poly(trimethylene terephthalate) (PTT) nanofibers with CdSe/ZnS core/shell quantum dots (QDs). Using the QD-decorated PTT nanofibers with diameters of 400-800?nm as active subwavelength waveguides, their high photostability for 630?nm red light and low absorption coefficient down to 2.6?cm( - 1) were characterized by both evanescent waveguiding excitation and irradiation excitation. Compared with the irradiation excitation, a 200 times enhancement was obtained from the active subwavelength waveguides under the evanescent waveguiding excitation.  相似文献   

20.
Semiconductor quantum dots (QDs) hold some advantages over conventional organic fluorescent dyes. Due to these advantages, they are becoming increasingly popular in the field of bioimaging. However, recent work suggests that cadmium based QDs affect cellular activity. As a substitute for cadmium based QDs, we have developed photoluminescent stable silicon quantum dots (Si-QDs) with a passive-oxidation technique. Si-QDs (size: 6.5 ± 1.5?nm) emit green light, and they have been used as biological labels for living cell imaging. In order to determine the minimum concentration for cytotoxicity, we investigated the response of HeLa cells. We have shown that the toxicity of Si-QDs was not observed at 112?μg?ml(-1) and that Si-QDs were less toxic than CdSe-QDs at high concentration in mitochondrial assays and with lactate dehydrogenase (LDH) assays. Especially under UV exposure, Si-QDs were more than ten times safer than CdSe-QDs. We suggest that one mechanism for the cytotoxicity is that Si-QDs can generate oxygen radicals and these radicals are associated with membrane damages. This work has demonstrated the suitability of Si-QDs for bioimaging in lower concentration, and their cytotoxicity and one toxicity mechanism at high concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号