首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用三拼块模具,以三次注射成型的方法,制得了玻纤增强610尼龙螺旋桨,经实船使用证明,该螺旋桨与主机配合良好,成本低,可以代替铜合金的。  相似文献   

2.
着重研究65型艇玻纤增强尼龙螺旋桨的质量问题,並提出了改进措施,效果显著。  相似文献   

3.
本文通过实桨的强度试验、测定材料的干湿强度变化并考察了实船使用情况,证明玻纤增强尼龙螺旋桨具有实用上安全的湿强度。  相似文献   

4.
据(Plasticsworld.1997,55(12)。报道美国LNPI程塑料公司开发一种称为ThermotufPF-IThHIEP的工程塑料,其主成份是尼龙一6复合材料,加有对见的玻璃纤维,并含有多种添加剂,使其抗冲强强、溶体流动性及表面光泽性得以提高。它不必另加润滑剂则可比标准的尼龙一6更容易加工,周期时期更短。目前应用包括体育用具、锯、裁剪机等受力器具。玻纤增强尼龙  相似文献   

5.
玻纤增强尼龙6的试制   总被引:1,自引:0,他引:1  
介绍了玻纤增强尼龙6的增强设备,工艺条件选择,性能及玻纤与树脂的浸润性与分散性,成型加工性及在机电、纺织、摩托车工业的应用。  相似文献   

6.
研究了采用(准)中粘度级尼龙做基体树脂,加入成核剂改善尼龙的结晶过程,提高结晶速率和初始熔融温度;添加光、热氧稳定剂,防止尼龙在成型加工和使用过程中产生降解与老化,提高塑料制品的质量和减少性能的分散性;采用合理的工艺条件,确保添加剂的均匀分散与减少玻纤的磨损,得到适于军工、航空和机电等领域需要的高性能的受力结构工程塑料。  相似文献   

7.
采用长玻纤连续添加和短切玻纤制备了玻纤增强尼龙6(PA6)复合材料。主要考察了玻纤含量、玻纤种类以及挤出工艺条件对复合材料力学性能的影响,并利用扫描电子显微镜对复合材料的冲击断面和拉伸断面及玻纤形态进行了观察。结果表明,采用短切玻纤加入时,玻纤含量对GF/PA6复合材料的力学性能影响很大。随玻纤含量的增加,复合材料的力学性能越来越高,断裂伸长率变低。加工工艺参数对复合材料的力学性能有影响。采用长玻纤连续添加时,玻纤的添加位置对复合材料的性能影响不大。在玻纤含量相同时,采用长玻纤连续添加得到的材料力学性能明显优于采用短切玻纤时的性能。玻纤能均匀地分散在PA6基体中,玻纤的保留长度和长度分布对复合材料的性能有直接影响。  相似文献   

8.
以三聚氰胺和磷酸盐为原料,通过简单、节能、环保的合成方法制备了一种具有高效阻燃效果的三聚氰胺聚磷酸盐复合阻燃剂(MPP)。通过傅里叶变换红外光谱(FTIR)对得到的MPP进行了表征,并通过缩合过程中氨的释放导致的失重来确定其转化率。采用该合成方法制备的MPP对玻璃纤维增强尼龙66进行了阻燃改性。进行了实际的阻燃试验,包括UL94垂直燃烧试验和极限氧指数测量,与现有的商用MPP系统进行了比较。  相似文献   

9.
尼龙玻纤增强材料目前被应用于电子产品、电气设备、汽车零部件、家电等领域,尼龙是指一种具有高机械性能结构的新型高聚物材料,它是属于一种可燃烧的材料。因此开展无卤阻燃尼龙玻纤增强复合新材料方面的关键技术研究开发和产品开发将是一种十分有必要的方面。为了解决尼龙玻纤增强的阻燃性能需填加阻燃助剂达到阻燃效果,对不同的类型的阻燃剂及其添加方式对于尼龙阻燃复合材料的阻燃性能以及机械力学性能等有着完全不同类型的影响。针对阻燃剂的主要阻燃机理分析以及主要阻燃作用方式机理的应用研究结果进行作了研究阐述。  相似文献   

10.
《工程塑料应用》2006,34(12):53-53
上海化工研究院的科技人员以合成高聚合度的聚磷酸蜜胺为主阻燃剂,以自制的阻燃剂为协同阻燃剂,复配成新型无卤膨胀性阻燃剂ANTI-9。研究了不同摩尔比的蜜胺/磷酸合成的聚磷酸蜜胺对玻纤增强尼龙(PA)6阻燃性能的影响。结果表明,当蜜胺/磷酸的摩尔比为1.2时合成的聚磷酸蜜胺的阻燃性能最好,且产率和耐水性也比较好。在玻纤增强PA6中添加25%-30%的ANTI-9时,其阻燃性能可以达到UL94V-0级,且阻燃玻纤增强PA6的综合性能达到国外同类产品的指标。  相似文献   

11.
长玻纤增强尼龙6复合材料研究   总被引:17,自引:3,他引:17  
采用熔体浸渍工艺制备了长玻纤增强尼龙6预浸料,研究了玻纤初始长度、玻纤含量、增韧剂对复合材料性能的影响,以及玻纤强度、树脂基体对复合材料性能的影响。试验结果表明,在玻纤含量32.2%,切粒长度为10mm时,复合材料的拉伸强度为208.4MPa,弯曲强度为269.5MPa,弯曲弹性模量为9.34GPa,缺口冲击强度为29kJ/m^2,冲击强度为63.4kJ/m^2,综合力学性能明显优于短玻纤增强PA6复合材料。  相似文献   

12.
采用熔融共混法制备了玻纤(GF)/尼龙6(PA6)复合材料,考察了GF含量对GF/PA6复合材料力学性能的影响。实验结果表明,在玻纤含量较低时,拉伸强度、弯曲强度和冲击强度伴随着玻纤含量的增加而提高。当GF质量分数为30%时,复合材料的力学性能和熔体流动速率处于最佳平衡状态。在GF增强的基础上,采用滑石粉(Talc)与GF复合增强体系,制备了系列增强尼龙复合材料。考察了Talc含量对PA6/Talc/GF复合材料力学性能的影响,Talc含量为5%时,复合材料的力学性能最好,片层状Talc与纤维状GF发挥了良好的协同作用。  相似文献   

13.
奈斯特(Neste)化学品公司今年初投产了一套玻璃纤维增强聚丙烯装置,该装置建于法国里昂附近的库伯利兹,投资约42万美元,由芬兰引进。长玻纤增强型聚丙烯复合材料(称为:Nepol)瞄准三个主要市场:汽车、民用和电子业,可用来代替金属或增强聚酰胺。目前,该装  相似文献   

14.
以尼龙66(PA66)为基体树脂、玻璃纤维为增强体,选用马来酸酐接枝聚烯烃弹性体(POE-g-MAH)为增韧剂并添加适宜复合添加剂,通过熔融共混的方法制备了一系列高强增韧尼龙材料。研究了增韧剂添加量及复合添加剂对材料力学性能的影响,并对其在常温、低温及高寒条件下的性能进行研究,结合扫描电子显微镜(SEM)对复合材料的微观形貌进行表征。结果表明,随着增韧剂添加量的增加,材料的拉伸强度、弯曲强度和无缺口冲击强度逐渐降低,缺口冲击强度逐渐增加,当增韧剂添加量为6份时材料的综合力学性能最优;在低温处理时材料的性能变化主要发生在开始处理的2 h内,且随着低温处理时间的延长以及温度的降低,材料的缺口冲击强度均逐渐降低、无缺口冲击强度均逐渐增加,且适宜复合添加剂的加入会改善材料的热稳定性以及玻璃纤维与基体树脂之间的界面结合性。综上所述:增韧剂添加量为6份,选用适宜复合添加剂制备材料中的玻纤与基体树脂结合性更好,材料力学性能及耐高寒性能最优。  相似文献   

15.
使用短切纱玻璃纤维和尼龙66(PA66),采用侧方喂料方式添加并熔融挤出制备高玻纤含量的增强PA66复合材料。对复合材料的力学性能进行测试,观察各玻纤含量材料注塑成型样板表面状况,利用扫描电子显微镜(SEM)对使用30%、50%玻纤增强PA66复合材料的冲击断面扫描,采用示差扫描量热(DSC)法测试使用45%、50%玻纤增强PA66复合材料的熔融峰。结果表明,50%玻纤增强尼龙66材料的拉伸强度、弯曲强度、弯曲模量、冲击强度均最高,SEM扫描显示50%玻纤含量材料纤维结合效果良好,但样板表面光洁度相对最差,材料熔融峰较45%玻纤含量PA66增加3.18℃。制得的50%高玻纤含量PA66复合材料可以应用于高耐热、高强度及对表面光洁度要求不高的结构部件。  相似文献   

16.
对比了不同黏度尼龙66 (PA66)树脂、表面不同处理方式的玻璃纤维以及一些特殊添加剂对30%玻纤增强尼龙66流动性及表面光泽度的影响.结果表明:低黏树脂、前处理的玻纤对30%玻纤增强PA66的流动性及表面光泽度的改善效果最佳;材料的流动性和表面光泽度随流动改性剂AM的加入显著提高,且当其质量分数为1%时,材料综合性能最好;有机成核剂的加入有效提高30%玻纤增强PA66的流动性及表面光泽度.  相似文献   

17.
以不同含量玻璃纤维(GF)增强改性高流动性及线型尼龙(PA)6,研究了其性能.结果表明,GF增强高流动性PA6材料的熔体流动性明显高于GF增强线型PA6材料,尤其当GF质量分数为50%~60%时,GF增强高流动性PA6材料仍然具有良好的表面性能,综合力学性能明显优于GF增强线型PA6材料.  相似文献   

18.
采用熔融共混法制备了尼龙66/玻璃纤维复合材料,用示差扫描量热法研究了玻纤含量对尼龙66材料的结晶行为,以及对力学性能和热变形温度的研究.结果表明:玻纤的加入对尼龙66熔点影响不大,而结晶度降低;结晶峰值温度θc升高,过冷度△D降低;玻纤增强尼龙66体系的力学性能得到了明显改善,热稳定性也得到了明显提高.  相似文献   

19.
玻纤增强石油发酵尼龙的热稳定性研究   总被引:1,自引:0,他引:1  
利用热重动力学方法研究了玻纤增强PF尼龙(即石油发酵尼龙)的热稳定性能。玻纤和偶联剂均对PF尼龙具有热稳定化作用,且硅烷A1100对PF尼龙的热稳定化作用最为显著。  相似文献   

20.
采用液压疲劳试验机研究了尼龙分子量和结晶度的大小,加载频率,最大载荷,环境温度和内应力对玻纤增强尼龙66疲劳寿命的影响。结果表明,随尼龙66分子量和结晶度的增加,疲劳寿命增加;材料中玻纤分布均匀,取向明显,有利于提高疲劳寿命;随加载频率,内应力,最大载荷及环境温度的提高,疲劳寿命显著降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号