首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对Lix984NC和Mextral984NC两种萃取剂的萃铜性能进行对比。试验考察了萃取剂浓度对萃铜效果的影响,绘制了两种萃取剂的萃铜等温线,并采用180 g/L的硫酸溶液反萃负载铜有机相。试验结果表明:当Lix984NC和Mextral984NC剂浓度相同时,其单级萃铜能力相同;萃取剂浓度为30%时,Lix984NC萃铜饱和容量略高于Mextral984NC,但Mextral984NC的分相性能优于Lix984NC。当浸出液中铜浓度为6~7 g/L时,连续运转中试试验结果两种萃取剂萃铜性能相差不大。  相似文献   

2.
对Lix984NC和Mextral984NC两种萃取剂的萃铜性能进行对比。试验考察了萃取剂浓度对萃铜效果的影响,绘制了两种萃取剂的萃铜等温线,并采用180 g/L的硫酸溶液反萃负载铜有机相。试验结果表明:当Lix984NC和Mextral984NC剂浓度相同时,其单级萃铜能力相同;萃取剂浓度为30%时,Lix984NC萃铜饱和容量略高于Mextral984NC,但Mextral984NC的分相性能优于Lix984NC。当浸出液中铜浓度为6~7 g/L时,连续运转中试试验结果两种萃取剂萃铜性能相差不大。  相似文献   

3.
以实验室自制的二元胺类化合物AMPY-1为萃取剂,研究了水相pH、氯离子浓度、硫酸根离子浓度对铜镍金属离子分配比的影响,测定了单一金属溶液的铜镍分离系数,模拟了镍电解液的除铜效果。结果表明,增加水相pH和氯离子浓度有利于铜离子的萃取,而增加水相硫酸根离子浓度则不利于铜离子的萃取;在pH 4、相比O/A为1∶1、(25!1)℃萃取10min,氯化铜与氯化镍、氯化铜与硫酸镍的铜镍分离系数分别为2 027和716;针对氯盐体系和氯盐—硫酸盐混合体系模拟镍电解液,在相比O/A=1∶1、(25!1)℃下萃取10min,其除铜后液含铜分别为1.1 mg/L和1.8 mg/L;按相比O/A=1∶5、(25!1)℃经3级半逆流萃取后,由氯盐体系和氯盐—硫酸盐混合体系得到的负载有机相,其铜镍质量比分别为156和45,均满足镍电解液深度净化除铜的要求。  相似文献   

4.
为了回收铜鼓风炉水淬渣中铜、钴等有价金属,本文以水淬渣硫酸浸出液为原料,进行了溶剂萃取分离铜、钴得出如下结论:Lix984对铜的萃取具有良好的选择性,其萃取铜的饱和容量为30.99g/L.在有机相组成为10%Lix984+90%磺化煤油、相比O/A=1:4、萃取级数4级的条件下,铜的萃取率可达99.99%.以150g/...  相似文献   

5.
本文采用Lix984作萃取剂,从含铜铁的生物浸出液中选择性萃取铜。通过考察溶液pH、相比O/A、初始铜浓度、萃取温度、搅拌速度及搅拌时间、萃取级数等因素对萃取率、分配比、分离系数的影响,结果表明:pH大于2.22,相比O/A=1:1,搅拌速度为200rpm,搅拌时间为4min,萃取级数为3级,铜的萃取率能达到99.8%以上,铜分配比能达到600以上,铁分配比小于1,铜铁分离系数能达到1900以上,同时发现低初始铜浓度及高萃取温度对萃取有利,可见生物浸出液中铜铁能达到很好的分离效果。  相似文献   

6.
铜再生灰浸出液中含有Cu、Zn、Fe、Cd等多种有价金属。采用“Lix984+磺化煤油”有机相从铜再生灰浸出液中萃取分离铜,并采用中和除铁法对萃余液中的铁沉淀分离。探究了萃取级数、萃取相比O/A、萃取剂浓度、水相初始pH、萃取时间对Cu2+与其它金属离子萃取分离的影响,以及溶液pH、反应温度、反应时间对萃铜余液除铁过程的影响。萃铜试验优化条件为:萃取级数2级、萃取相比3:4、萃取剂浓度15%、萃取时间2 min、萃取初始水相pH=1.5。除铁试验最佳参数为:中和终点pH=4.0、反应温度40℃、陈化时间1 h。在最佳条件下,Cu的萃取率为99.12%,与Zn、Cd、Fe的分离系数分别为1 317.9、1 178.7和651,实现Cu与其它金属的有效分离。萃铜余液除铁率达99.67%,除铁后液满足锌电解液对Fe浓度的要求。  相似文献   

7.
黄钠铁矾渣用浓氨水分解,浸出液经盐酸处理后,用LIX984萃取剂和磷酸二异辛酯(P204)分别萃取铜和镍。探讨了原料液中pH值、有机相中萃取剂体积分数、相比(O/A)、铜、镍离子浓度、反萃取相比(O/A)等萃取条件对铜镍萃取率的影响。结果表明:LIX984萃取剂体积分数为20%、pH值为2.5、相比(O/A)为1∶1、Cu~(2+)和Ni~(2+)浓度均约为5 g/L,Cu~(2+)的萃取率约为92%,反萃取相比(O/A)为1∶1,铜的反萃取率高达99%,调节萃余液中pH值约为5.5时,P204对镍的萃取率超过98%,镍的反萃取率约为91%。LIX984和P204萃取剂对铜和镍的萃取效果显著,能够选择性地萃取回收黄钠铁矾渣浸出液中的铜和镍。  相似文献   

8.
对Lix984H在高酸高铁溶液中的萃取性能进行试验研究和工业验证。结果表明,增大溶液中的铜浓度、加大铜铁比例、降低溶液的酸度、适当增大相比和控制萃取率,有助于提高萃取过程的铜铁选择性,降低试剂单耗。  相似文献   

9.
采用Lix984作萃取剂,煤油作稀释剂混合而成溶液萃取的有机相,从含Ni~(2+),Fe~(3+),Mg~(2+)离子的硫酸盐溶液中萃取分离Cu~(2+).实验结果表明,在一定范围内,铜萃取率随萃取剂浓度的升高、相比的增加、萃取时间的延长、初始水相pH值的增加、萃取温度的升高以及搅拌时间的延长而增加.本实验的优化条件为萃取剂体积分数达60%,相比为O∶A=2∶1,萃取时间为16 min,萃取初始水相pH值为2.5,萃取温度在25~45℃之间,搅拌速度为240 r/min.在最佳条件下,铜萃取率高达95.55%.Fe~(3+)萃取率为8.82%,Ni~(2+)的萃取率为5.47%,Mg~(2+)的萃取率为2.36%.从而达到Cu~(2+)与其它金属离子有效分离的效果.  相似文献   

10.
从含铜铁锌的酸性溶液中选择性萃取铜   总被引:4,自引:0,他引:4  
用Lix984作萃取剂,从含铜铁梓的酸性浸出液中选择性萃取铜,结果表明,萃取剂浓度为3%,混合时间为2min,Vo:Va=1:1,pH=2.2时,萃取效果最好,铜萃取率大于96%,铁、锌共萃率低于5%,有机相中无萃取污物产生。反萃试验结果表明,用硫酸溶液反萃取,铜和铁的反萃率随着反萃取剂浓度、反萃相比,反率时间的增大而升高。  相似文献   

11.
研究了以离子液体Cyphos IL101为萃取剂从氯化体系中萃取分离铜、镍,考察了溶液酸度、氯离子浓度、萃取剂体积分数、水相pH对铜、镍萃取分离的影响。结果表明:Cyphos IL101能从氯化体系中高效萃取铜,而镍几乎不被萃取;在盐酸浓度3mol/L条件下,萃取分离系数β(Cu/Ni)达49 050.38;铜萃取率随氯离子浓度升高而提高,但不受水相pH影响。分别用硝酸、硫酸和纯水对负载铜有机相进行反萃取,结果表明:硝酸和硫酸对铜的反萃取率均高于90%,而水较难实现反萃取。采用斜率法对萃取机制进行分析,结果表明:Cyphos IL101通过氯阴离子交换与铜以物质的量比1∶1进行萃取,萃取产物为R3R’PCuCl_3。水相和有机相的UV-Vis光谱、Raman光谱及XPS能谱分析结果表明,氯化体系中,[CuCl_4]~(2-)为有效萃合物结构。由于优良的离子交换萃取性能,Cyphos IL101有望成为一种新型高效分离铜镍的优良萃取剂。  相似文献   

12.
P204萃取硫酸铜溶液中的钙   总被引:1,自引:1,他引:0       下载免费PDF全文
针对某铜盐厂硫酸铜产品杂质钙含量较高的现状,选用P204从硫酸铜溶液中萃取钙。考察P204质量浓度、相比O/A、萃取时间、水相平衡pH等对铜钙萃取分离的影响。结果表明,P204萃取钙的适宜条件为:P204质量浓度1.2mol/L,O/A=5∶1,振荡时间3min,pH=1.5。四级逆流萃取后,水相中钙质量浓度低于0.05g/L。  相似文献   

13.
复杂镍浸出液萃取净化的研究   总被引:1,自引:1,他引:0  
以D2EHPA为萃取剂,从钼镍矿的复杂镍浸出液中萃取分离锌、铜。考察了萃取平衡时间、D2EHPA体积浓度、相比(O/A)、料液pH对萃取分离锌、铜效果的影响,确定了D2EHPA萃取锌、铜的最佳条件。室温下萃取除杂的最佳工艺条件为:萃取平衡时间3 min,D2EHPA的体积浓度20%,相比1∶1,料液pH=2.0,一级萃取率锌为89.5%,铜为11.0%。负载有机相经1 mol/L的H2SO4反萃,锌、铜和镍均可完全反萃。经三级逆流萃取可将料液中锌降低到0.01 g/L,萃取率达98.9%。  相似文献   

14.
从铜铁锌酸性液中选择性萃取铜   总被引:3,自引:0,他引:3  
采用Lix984萃取剂 ,对含铜铁锌酸性浸出液进行选择性萃取铜研究。结果表明 ,萃取剂浓度为 3%时 ,铜的萃取率可达到 99% ,且锌和铁共萃率低 ;萃取混合时间 >2min时 ,铜的萃取率达 96 % ,而铁和锌的萃取率 <5 % ;当相比 (O/A)为 1∶1时 ,铜的萃取效果最佳 ;随萃取值的增大 ,铜的萃取率升高 ,但为了避免萃取污物的大量产生 ,应控制萃取pH <2 .5。反萃试验结果表明 ,铜和铁的反萃率随着反萃剂浓度、反萃相比、反萃时间的增大而升高。  相似文献   

15.
葛素志 《湿法冶金》2022,(6):530-533
研究了用C272从粗硫酸镍溶液中萃取分离锌离子。结果表明:在Vo/Va=1/1、溶液pH=3.0、混合振荡5 min、循环6级萃取条件下,锌离子萃取率达99.86%,而镍离子萃取率仅2.38%,二者分离效果较好,萃余液中,锌离子质量浓度降至1.35 mg/L;负载有机相用180 g/L硫酸溶液反萃取后可循环使用。  相似文献   

16.
M5640+P204+P507萃取净化镍电解液   总被引:2,自引:0,他引:2  
对硫酸镍电解液的萃取净化除杂进行了系统研究。采用M5640对铜离子进行除杂的条件为:pH3.0,相比1∶1,萃取剂体积浓度15%,振荡时间5min,在此条件下铜离子的萃取率大于99.83%,萃余液含铜已达到5N镍电解液标准要求。去除铜离子之后,采用P204对电解液进行除杂,试验条件:pH4.0,相比2∶1,萃取剂体积浓度25%,振荡时间7min,温度20℃。萃余液再用P507萃取除杂,试验条件:用氢氧化钠溶液均相制皂75%,提高待萃液当中钴离子的含量至4.19g/L,即Co/Ni为1/10,4级萃取,控制水相pH4~5。最终萃余液中各杂质离子的含量均达到生产5N镍的电解液标准。  相似文献   

17.
研究了以正戊醇为稀释剂、[Omim]Cl离子液体为萃取剂、氯化铵溶液为反萃取剂从钒渣水浸液中萃取分离钒,考察了萃取剂浓度、萃取时间、水相pH、萃取温度对钒萃取率的影响,以及反萃取剂浓度、反萃取剂pH、反萃取时间对钒反萃取率的影响。结果表明:在[Omim]Cl质量浓度50.0 g/L、萃取时间30 s、萃取温度25.0℃、水相pH=8.051条件下,钒萃取率为96.2%,萃取反应自发放热;以NH_4Cl为反萃取剂,在NH_4Cl浓度1.5 mol/L、反萃取剂pH=8.5、反萃取时间30.0 min条件下,钒反萃取率达98.06%;反萃取得到的NH_4VO_3固体经洗涤、烘干、煅烧得到纯度较高的五氧化二钒。  相似文献   

18.
以Lix54、TOPO为萃取剂,煤油为稀释剂,萃取回收废旧三元锂离子电池浸出萃余液中的锂。采用单因素试验法,研究了Lix54与TOPO配比、相比、萃取剂浓度、料液pH、萃取反应时间对锂萃取率的影响。研究表明,在Lix54︰TOPO=2(mL/g)、萃取剂浓度45%、萃取时间10 min、料液pH=13、相比O/A=1︰1的条件下,锂的萃取率可达98.5%。负载有机相经水洗、盐酸反萃、碳酸钠沉淀可得到合格的电池级碳酸锂。  相似文献   

19.
采用萃取工艺从黄金冶炼废水中回收铜,考查了萃取剂浓度、相比O/A、混合时间、pH值等因素对铜萃取率的影响,获得优化工艺条件:萃取剂浓度为20%,相比O/A=2:1,混合时间为3 min,pH值1.5~2。在优化工艺条件下开展了工业试验,铜萃取率可达95%以上,反萃液铜离子浓度可达到36 g/L以上,满足铜电积工序要求,实现了铜的高效回收。  相似文献   

20.
采用Mextral 984H萃取Cu-新型萃取剂HBL110萃取Co的工艺,从含Fe等杂质的铜钴矿堆浸液中回收Co,考察了有机相配比、皂化率、平衡pH值、温度、相比对Co萃取率的影响。实验结果表明,在有机相体积分数50.5%、皂化率50%、料液pH值2.4~2.6、相比1∶1、温度30℃、时间5min、萃取级数4级的条件下,Co萃取率大于95%;负载有机相经纯水洗涤后,在H2SO4浓度0.7mol/L、相比8∶1、时间5min、温度40℃、反萃级数4级的条件下,Co反萃率达到94%以上,反萃液Co浓度达到20g/L,与Fe、Mn、Mg等杂质实现分离并达到富集效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号